М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
milenaermolaev
milenaermolaev
03.01.2021 17:33 •  Алгебра

Найти неизвестный член пропорции: 6,9: 4,6=(2x+5): 5,4

👇
Ответ:
masha19902
masha19902
03.01.2021

твой пример=(преобразуем дробь и переносим все от х)5дробь23×37,26=2х+5=81дробь10=2х+5=-2х=5-81дробь10=х=1,55

ответ:х=1,55

можешь подставить и проверить.

4,7(87 оценок)
Ответ:
кэтлин2005
кэтлин2005
03.01.2021

если пропорция верна, произведение ее крайних членов равно произведению средних членов. поэтому

6,9*5,4=4,6*(2х+5)

2х+5=6,9*5,4/4,6

2х+5=8,1

2х=8,1-5

2х=3,1

х=3,1/2

х=1,55

4,4(58 оценок)
Открыть все ответы
Ответ:
syamiulinlinar
syamiulinlinar
03.01.2021
Доказательство:

Пусть n натуральное число, тогда 2n-1 будет натуральным и нечётным числом. Возведем данное число в квадрат:

(2n-1)^2=(2n)^2-4n+1=4n^2 -4n+1

Вычтем 1 и получим:

4n^2-4n

Докажем с математической индукции, что данное число делиться на 8:

При n=1\Rightarrow 4-4=0, 0 делиться на 8, следовательно условие выполняется.

Предположим что данное число делиться на 8 при некотором n. Докажем что данное число делиться на 8 при n+1:

4(n+1)^2-4(n+1)=4(n^2+2n+1)-4n+4=\\\\=4n^2+8n+4-4n+4=(4n^2-4n)+8n+8=\\\\(4n^2-4n)+8(n+1)

По предположению 4n^2-4n делиться на 8. Следовательно, существует натуральный k так что:

4n^2-4n=8k

Отсюда:

(4n^2-4n)+8(n+1)=8k+8(n+1)=8(k+n+1) следовательно, при n+1 данное число тоже делиться на 8. Ч.Т.Д.
4,6(90 оценок)
Ответ:
алик137
алик137
03.01.2021
Доказательство:

Пусть n натуральное число, тогда 2n-1 будет натуральным и нечётным числом. Возведем данное число в квадрат:

(2n-1)^2=(2n)^2-4n+1=4n^2 -4n+1

Вычтем 1 и получим:

4n^2-4n

Докажем с математической индукции, что данное число делиться на 8:

При n=1\Rightarrow 4-4=0, 0 делиться на 8, следовательно условие выполняется.

Предположим что данное число делиться на 8 при некотором n. Докажем что данное число делиться на 8 при n+1:

4(n+1)^2-4(n+1)=4(n^2+2n+1)-4n+4=\\\\=4n^2+8n+4-4n+4=(4n^2-4n)+8n+8=\\\\(4n^2-4n)+8(n+1)

По предположению 4n^2-4n делиться на 8. Следовательно, существует натуральный k так что:

4n^2-4n=8k

Отсюда:

(4n^2-4n)+8(n+1)=8k+8(n+1)=8(k+n+1) следовательно, при n+1 данное число тоже делиться на 8. Ч.Т.Д.
4,5(48 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ