№1.
Если трехчлен (2х²- 7х+а) содержит множитель ( х - 4), значит один из корней уравнения 2х²- 7х+а= 0 равен 4, т.е. х=4
Подставим х=4 в уравнение 2х²- 7х+а=0 и найдем а.
2·4²- 7·4+а =0
а=28-32
а= - 4
№2.
4х²+ ах + 6 содержит множитель ( 2х + 1)
1)2х+1=0
х= - 0,5 - это первый корень уравнения 4х²+ах+6=0
2) Делим обе части уравнения 4х²+ах+6=0 на 4 и получим приведенное квадратное уравнение:
х²+0,25ах+1,5=0
3) По теореме Виета для приведенного квадратного уравнения найдем второй корень,
х₁ * х₂ = 1,5
х₂=1,5 : (-0,5)
х₂= - 3
4) По теореме Виета для приведенного квадратного уравнения найдем второй коэффициент, стоящий при х.
х₁+х₂= -0,25а
- 0,25а = - 0,5 + (-3)
- 0,25а = - 3,5
а = - 3,5 : (-0,25)
а = 14
Объяснение:
Расстояние, на которое сближаются два велосипедиста за единицу времени, называют скоростью сближения vсбл.
В случае движения двух объектов навстречу друг другу скорость сближения равна: vсбл = v1 + v2.
Если начальная расстояние между пунктами равна S километров и два велосипедиста встретились через tвстр ч, то S = vсбл * tвстр = (v1 + v2) * tвстр, км.
Пусть скорость второго велосипедиста v1 примем за х км/ч, тогда скорость v2 первого велосипедиста равна (х + 3) км/ч.
Согласно условию задачи, нам известно, что расстояние между пунктами S = 81 км и tвстр = 3 ч, подставим значения в формулу:
(х + (х + 3)) * 3 = 81
(х + х + 3) * 3 = 81
(2х +3) * 3 = 81
6х +9 = 81
6х = 81 - 9
6х = 72
х = 72 : 6
х = 12
Скорость второго велосипедиста равна 12 км/ч.
Скорость первого велосипедиста равна: 12 + 3 = 15 км/ч.
ответ: скорость первого велосипедиста— 15 км/ч; скорость второго велосипедиста — 12 км/ч.
решение смотри на фотографии
Объяснение: