Объяснение:
1)Пусть боковая сторона равна x см, тогда основание равно y см. Зная, что основание на 7 больше, составлю первое уравнение системы:
y-x = 7
Зная, что периметр равнобедренного треугольника равен 43 см(для равнобедренного треугольника получаем выражение 2x + y), составлю второе уравнение системы:
2x + y = 43
Таким образом, получаем следующую систему уравнений:
y-x = 7
2x+y = 43
решу систему методом подстановки:
y = x+7
2x + x+7 = 43 (1)
(1)2x+x+7 = 43
3x+7 = 43
3x = 36
x = 12
12 см - боковая сторона треугольника, но надо всё равно дорешать систему.
x = 12
y = 12+7 = 19
ответ, 12 см равна боковая сторона. ответ на вопрос задачи мы получили.
Поэтому
т.е
слева от точки 2 подмодульное справа от точки 2 подмодульное
выражение берется со знаком "-" выражение со знаком "+"
- +
--------------------------------------------------------(2)------------------
Аналогично
т.е
слева от точки 4 подмодульное справа от точки 4 подмодульное
выражение берется со знаком "-" выражение со знаком "+"
------------------------------------------------------------------(4)------------------
- +
Изобразим на одной координатной прямой. Причем знаки первого подмодульного выражения будем изображать наверху, знаки второго - внизу
- + +
--------------------------------------(2)--------------------(4)--------------
- - +
Раскрываем модули на (-∞;2].
Оба подмодульных выражения раскрываем с противоположным знаком: |x-2|=-(x-2)=-х+2 ; |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
-x+2-x+4=3
-2х+6=3
-2х=-3
х=3/2
х=1,5
1,5 ∈(-∞;2]
Раскрываем модули на (-2;4]: |x-2|=x-2 ; |x-4|=-(x-4)=-х+4
Уравнение принимает вид:
x-2-x+4=3
2=3 -неверное равенство
Уравнение не имеет корней
Раскрываем модули на (4;+∞).
Оба подмодульных выражения раскрываем не меняют выражения:
|x-2|=x-2 ; |x-4|=x-4
Уравнение принимает вид:
x-2+x-4=3
2х-6=3
2х=9
х=9/2
х=4,5
4,5 ∈(4;+∞)
ответ. 1,5 ; 4,5
Остальные примеры решаются аналогично.
2)
- + +
-----------(-2)-------------(3)------------
+ + -
на (-∞;-2] уравнение принимает вид: -х+2-3(3-х)+х=0 или 3х=7 х= 7/3 - не принадлежит промежутку (-∞;-2), не является корнем уравнения
на (2;3] уравнение принимает вид: х-2-3(3-х)+х=0 или 5х=11 или х=2,2
2,2∈ (2;3] , значит х=2,2 - корень уравнения
на (3;+∞) уравнение принимает вид х-2+3(3-х)+х=0 или х=7
7∈(3;+∞), значит х=7 является корнем уравнения
ответ. 2,2 ; 7
3)
- + +
------------------(1)--------------------(4)----------------
+ + -
на (-∞;1] уравнение принимает вид: 4-х-2х+2=5-2х или х=1
1∈(-∞;1] , значит х=1 - корень уравнения.
на (1;4) уравнение принимает вид: 4-х+2х-2=5-2х или 3х=3 или х=1
1∉(1;4) , на данном промежутке уравнение не имеет корней
на (4;+∞) уравнение принимает вид: -4+х+2х-2=5-2х или 5х=11 или х=2,2
2,2∉(4;+∞) уравнение не имеет корней на данном промежутке
ответ. х=1
5)
|x| - - + +
|3x+2| - + + +
|2x-1| - - - +
------------------(-2/3)-------(0)------------(1/2)---------------
(-∞;-2/3] - x -3x - 2 - 2x +1 = 5 или -6х=6 или х=-1
-1∈(-∞;-2/3] х=-1 - корень уравнения
(-2/3;0] х - 3х - 2 - 2х + 1 = 5 или -4х=6 или х=-3/2
-3/2∉(-2/3;0] х=-1,5 не является корнем уравнения
(0;1/2] x+3x+2-2x+1=5 или 2х=2 или х=1
1∉(0;1/2] х=1 не является корнем уравнения
(1/2;+∞) х+3х+2+2х-1=5 или 6х=4 х= 2/3
2/3∈(1/2;+∞)
ответ. х=-1 ; х=2/3