а) a1 = 30, a2 = 24, d = 24 — 30 = -6
Формула n-ого члена: a(n) = 36 — 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 — 6n > 0
{ a(n+1) = 36 — 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 — 6n >= 0
{ a(n+1) = 36 — 6n — 6 = 30 — 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 — 6*5 = 6
a(6) = 36 — 6*6 = 0
c) Определим количество чисел, если их сумма равна -150.
S = (2a1 + d*(n-1))*n/2 = -150
(2*30 — 6*(n-1))*n = -150*2 = -300
(66 — 6n)*n = -300 = -6*50
Сокращаем на 6
(11 — n)*n = -50
n^2 — 11n — 50 = 0
(n — 25)(n + 2) = 0
Так как n > 0, то n = 25
1.1) arcsin(-1) + arccos0 = π + (π/2) = 3π/2
Пусть arcsin(-1) = α, тогда cosα = -1, значит α = π
Пусть arccos0 = β, тогда cosβ = 0, значит β = (π/2)
2) arctg + arctg(- √3) = π/4 + (-π/3) = 1
2. x=±arccosa+2πk,k∈Z .
3.tg(2x) = 2·tg(x)/(1 - tg²(x))
4.cos 5x-cos 7x=0
-2sin 6x*sin (-x)=0(-2 на синус полусуммы углов умножить на синус полуразности углов)
sin 6x=0 или sin x=0
6x=pn, x=pn/6 или x=pn
x=pn/6
5. sin (3x) =1
3х= π/2+2πn
x= π/6 + (2πn)/3
7. sin(3x)-sin(x)=0
2*sin((3x-x)/2)*cos((3x+x)/2)=0
2sin(x)*cos(2x)=0
1) sin(x)=0
x=π*n
2) cos(2x)=0
2x=(pi/2)+pi*n
x=(pi/4)+pi*n/2
Надеюсь
Здесь просто нужно уравнять и решить