В первой задаче надо построить параболу y=x в квадрате рожками вниз (если перед Х стоит знак минус) и на этом же провести прямую линию у=2х-3.
Она по сравнению с у=2х смещена на 3 вниз. Точки пересечения параболы и прямой дадут ответ.
Во второй задаче обычная парабола у = Х квадрат (рожками вверх).
а) отметим на ней тоски (-2,4), (1,1), (3,9)
б) при у=4 х1=-2 х2=2 (две точки (-2,4) и (2,4))
в) это левая ветка параболы: на наибольшее значение у=9, при х=-3
наименьшее значение у=0 при х=0.
Нарисовать не могу - нет сканера.
1)
х - большее число
у - меньшее число
ху -18 = 2х
х + у = 11
Из второго выражаем у через х
у = 11 - х
Подставляем это значение в первое уравнение
х(11-х) - 18 = 2х
-х*х + 9х - 18 = 0
х1 = 6 у1 = 5
х2 = 3 у2 = 8
Так как у < х, единственный правильный вариант - эти числа 5 и 6.
2)
х - количество двухместных лодок
у - количество трёхместных лодок
2х - сколько человек помещаются в двухместные лодки
3у - сколько человек помещаются в трёхместные лодки
2х + 3у = 14
х + у = 6
Выразим из второго уравнения у через х
у = 6 - х
Подставляем это значение в первое уравнение^
2(6-у) + 3у = 14
12 - 2у + 3у = 14
12 + у = 14
у = 2
Значит у причала стояло 2 трёхместных и 4 двухместных лодки.