3) (2 - 3х)(5х - 3) - х(2 - х) = 3 - 12х²,
10х - 6 - 15х² + 9х - 2х + х² - 3 + 12х² = 0,
-2х² + 17х - 9 = 0,
2х² - 17х + 9 = 0,
a = 2, b = -17, c = 9;
4) (1 - 2x)(2x - 4) - 3(2 - x) = 3 - 9x²,
2x - 4 - 4x² + 8x - 6 + 3x - 3 + 9x² = 0,
5x² + 13x - 13 = 0,
a = 5, b = 13, c = -13;
5) (5 + 2x)(4x - 1) - 2(2 + 3x) = -13x²,
20x - 5 + 8x² - 2x - 4 - 6x + 13x² = 0,
21x² + 12x - 9 = 0,
7x² + 4x - 3 = 0,
a = 7, b = 4, c = -3;
6) (2 - 6x)(x - 4) - 3x(1 - x) = -22x²,
2x - 8 - 6x² + 24x - 3x + 3x² + 22x² = 0,
19x² + 23x - 8 = 0,
a = 19, b = 23, c = -8.
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.