В тетраэдре ∠ABCD угол ∠ABD=∠ABC=45°. AB=32, BD=BC=7, DC=8. Вопросы: 1)AB ровна⇒? 2)По Теореме косинусов, в ABD треугольнике: AD²=Ab²+BD²-2∙AB∙BDcos(∠ABD). AD=? 3)▲ ADC равносторонний, поэтому его высота AE также является медианной ⇒DE =?. AE = √AD²-DE² =? Sadc=1/2DC∙AE=?
1) Если а>0, то обе части первого неравенства можно разделить на а, при этом знак неравенство останется тем же, т.е. 1-ое неравенство станет x<8/a, а второе неравенство x>8/a, задают непересекающиеся множества решений.Поэтому такие а не годятся. 2) Если а=0, то второе неравенство не имеет смысла, значит а=0 не подходит. 3) Если а<0, то разделим обе части первого неравенства на а. При этом знак неравенства изменится на противополжоный, т.е. первое неравенство станет x>8/a, что совпадает со вторым неравенством. Значит и множества их решений совпадают. Итак, ответ: при а<0.
Во-первых, обозначим стороны прямоугольника: Пускай длина - a, ширина - b. Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат. У квадрата все стороны равны! Обозначим стороны данного квадрата: Длина: a - 4 Ширина: b + 7. Ширина равняется длине у квадрата. Значит:
Еще, знаем что площадь квадрата равна 100. То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение. Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11 a = 3 + 11 = 14 Подставим в первое уравнение:
хз брат прости я не знаю прости