Y = x^2 + 4x = 2 Здесь Все под один знак равно: y = x^2 + 4x - 2 Тогда графиком данной функции будет являться парабола! Приравниваем к 0 правую часть функции: x^2 + 4x - 2 = 0 Находим 2 точки параболы: m и n m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2 n = 4 -8 -2 = -6 Получились 2 точки: A (-2;0) и B (-6;0); Далее находим центральную точку нашей параболы путем нахождения дискриминанта: D = (b/2)^2 - ac. ("/"-дробная черта) D = 4 - 1 (-2) D = 6 Это примернооо 2,4 квадратный корень. x1/2 = -b/2 +- корень из D и все разделить на a. x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4 Дальше надо начертить систему координат, и расставить эти точки: A (-2;0); B (-6;0); C (-4,4; 0,4);
Прямоугольник — это четырёхугольник, у которого четыре прямых угла. Размеры прямоугольника задаются длиной его сторон, обозначаемых обычно a и b. Свойства прямоугольника : -противолежащие стороны равны и параллельны друг другу; -диагонали равны и в точке пересечения делятся пополам; -сумма квадратов диагоналей равна сумме квадратов всех (четырех) сторон. Периметр P прямоугольника равен удвоенной сумме сторон, прилежащих к одному углу P = 2(a + b). Длина диагонали d прямоугольника вычисляется по теореме Пифагора: d = √(a² + b²) х*х+γ*γ=10*10 х²+γ²=100 2х+2γ=28 х+γ=14 х=14-γ (14-γ)²+γ²=100 196-28γ+γ²+γ²=100 2γ²-28γ+96=0 γ=8 х=14-8=6
Здесь Все под один знак равно:
y = x^2 + 4x - 2
Тогда графиком данной функции будет являться парабола!
Приравниваем к 0 правую часть функции:
x^2 + 4x - 2 = 0
Находим 2 точки параболы: m и n
m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2
n = 4 -8 -2 = -6
Получились 2 точки: A (-2;0) и B (-6;0);
Далее находим центральную точку нашей параболы путем нахождения дискриминанта:
D = (b/2)^2 - ac. ("/"-дробная черта)
D = 4 - 1 (-2)
D = 6
Это примернооо 2,4 квадратный корень.
x1/2 = -b/2 +- корень из D и все разделить на a.
x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4
Дальше надо начертить систему координат, и расставить эти точки:
A (-2;0); B (-6;0); C (-4,4; 0,4);
Получится парабола!