Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Примеры: 14 и 25 взаимно просты, а 15 и 25 не взаимно просты (у них имеется общий делитель 5).
Наглядное представление: если на плоскости построить «лес», установив на точки с целыми координатами «деревья» нулевой толщины, то из начала координат видны только деревья, координаты которых взаимно просты.
8, 15 — не простые, но взаимно простые.
6, 8, 9 — взаимно простые числа, но не попарно взаимно простые.
8, 15, 49 — попарно взаимно простые.
Но она шила на (х + 4) в день и за срок (80 / х - 4) дней есть осталось сшить ещё 2 сумки.
Составим и решим уравнение.
Итак:
80 - (x + 4) * (80 / x - 4) = 2.
Раскрыв скобки, приведя подобные члены и умножив уравнение на х, получим квадратное уравнение:
4 * x² + 14 * x - 320 = 0.
Его корни:
x1,2 = -7 / 4 ± √5316 / 8.
По условию подходит только положительный корень, поэтому x = -7 / 4 + √5316 / 8.
ответ: швея по плану должна была шить (-7 / 4 + √5316 / 8) сумки в день.