На первом витке окружности расставлены точки 0; π/2; π; 3π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4
На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4 + 2π=11π/4
На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение
11π/4+2π=19π/4
На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4
На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1
Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью
Это точки А и В
Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1
Пусть
√17-√26 > -1
√17 + 1 > √26
17 + 2√17 + 1 >26
2√17>8
4·17 > 64 - верно
Значит точка существует
Ей соответствуют на ед окружности точки Р и Т
а)
т.к график проходит через начало отсчёта, то он график прямой пропорциональности вида: y=kx
Найдём точку, лежащую на графике с координатами (2;1). x=2, y=1
1=k×2
k=1:2
k=0,5
Этот график: y=0,5x
б)
График не проходит через начало отсчёта и он паралеллен оси абсцисс.
Следовательно:
Этот график вида: y=b, где b-некоторое число.
Судя по графику b=2.
Этот график: y=2
в)
График не проходит через начало отсчёта и он не паралеллен одной из осей. Следовательно он вида: y=kx+b
Точки пересечения: (0;3) и (2;0)
Подставим и получим:
3=k×0+b
0=k×2+b
Заметим, что в первом уравнении b=3. т.к k обратится в ноль.
Запишем в новом виде второе уравнение и получим:
0=k×2+3
2k=-3
k=-3:2
k=-1,5
Нашли все неизвестные переменные и уже, наконец, уравнение этого графика: y=-1,5x+3