Пусть число десятков искомого двузначного числа равно а , число единиц равно b,тогда поразрядная запись числа будет 10а+b. Утроенная сумма цифр числа равна 3(a+b). По условию задачи, искомое двузначное число равно утроенной сумме своих цифр, поэтому можно составить уравнение: 10a+b=3(a+b) 10a+b=3a+3b 10a-3a=3b-b 7a=2b b=7a/2 b=3,5a Осталось определить, какие из имеющихся десяти цифр (0,1,2,...,9) подходят под это условие. Только одна пара цифр подойдёт - это a=2, b=7 (b=3,5a=3,5*2=7) Искомое число равно 27 Проверка: 27=3(2+7) 27=3*9 27=27 ответ: 27
По формуле классической вероятности: p=m/n n=90 ( количество двузначных чисел)
Числа делящиеся на 3: 12; 15;... 99 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=12 d=15-12=3 99=12+3·(n-1) ⇒87=3(n-1) n-1=29 n=30
Числа делящиеся на 5: 10; 15;20; 25; 30;...; 95 - таких чисел 30 Можно найти их количество по формуле n-го члена арифметической прогрессии a₁=10 d=15-10=5 95=10+5·(n-1) ⇒85=5(n-1) n-1=19 n=20
Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
число единиц равно b,тогда поразрядная запись числа будет 10а+b.
Утроенная сумма цифр числа равна 3(a+b).
По условию задачи, искомое двузначное число равно утроенной сумме своих цифр, поэтому можно составить уравнение:
10a+b=3(a+b)
10a+b=3a+3b
10a-3a=3b-b
7a=2b
b=7a/2
b=3,5a
Осталось определить, какие из имеющихся десяти цифр (0,1,2,...,9) подходят под это условие.
Только одна пара цифр подойдёт - это a=2, b=7 (b=3,5a=3,5*2=7)
Искомое число равно 27
Проверка: 27=3(2+7)
27=3*9
27=27
ответ: 27