В решении.
Объяснение:
а) Преобразуйте выражение, чтобы получить многочлен стандартного вида. Укажите степень многочлена.
(2х² - 2)² - 4х³(х³ + х² - х - 2) + 4(х²)³ + 20х⁹/5х⁴ - 2(4х³ + 1) =
= 4х⁴ - 8х² + 4 - 4х⁶ - 4х⁵ + 4х⁴ + 8х³ + 4х⁶ + 4х⁵ - 8х³ - 2 =
= 8х⁴ - 8х² + 2. Стандартный вид. Степень (х⁴) = 4.
б) Докажите, что при любых целых значениях x многочлен делится на 2.
Так как коэффициенты при х чётные (8 и 8) и число 2 также чётное, при любых значениях х многочлен делится на 2.
в) Докажите, что при любых действительных значениях x многочлен не может принимать отрицательных значений.
Так как 8х⁴ > 8х² и степени при х чётные, то есть, сами одночлены в составе многочлена не могут быть отрицательными, при любых действительных значениях x многочлен не может принимать отрицательных значений.
Какой это может быть делитель: 2 не может быть, тогда число а будет равно 10, а число b может быть только 2 (чтобы общим наибольшим делителем было число 2), тогда наибольший общий делитель 2 будет составлять 100% от числа b, а такого ответа у нас нет. Перебирая таким образом все возможные общие делители при сохранении всех условий задачи, делаем выводы, что правильный ответ: 25 %. Как пример можно привести: а = 15, b = 12, наибольший общий делитель - 3.
ответ: 25 % (вариант Д).