Здесь последовательно находим абсциссы х=-0,5; х=-2,5; х=-1; х=2, проводим прямую, параллельно оси оу до точки пересечения с графиком и называем, чему в этой точке равна ордината.
2) f(x)=-2,5, если х = 5 ; f(x)=-2, если х=3,5;
f(x)=0, если х=-3, х=-1, х=1,5;
f(x)=2, если х=0; х=-1,5, х=-2,5.
Здесь наоборот, по известной ординате, у=-2,5; у=-2; у=0; у=2 находим абсциссу х, их может быть несколько, т.к. прямая, параллельная оси ох пересекает график в нескольких точках, опускаем из этих точек перпендикуляры на ось ох и читаем ответы
3) Е(у) = [-2,5; 3]- это те значения, которые пробегает у. самое маленькое у=-2,5, самое большое у=3.
Cosφ = √2 / 2 φ = ±arccos(√2 / 2) + 2пk, kЄZ φ = ±п/4 + 2пk, kЄZ -4п<=φ<=0 (по условию) -4п<=п/4 + 2пk<=0 или -4п<=(-п/4) + 2пk<=0 -9п/4<= 2пk<=-п/4 -7п/4<=2пk<=п/4 -9/8<=k<=-1/8 -7/8<=k<=1/8 k=1 k=0 Подставляем значения k в наше значение угла, учитывая, что каждое относиться к этому выражению со своим знаком, 1-й k к выражению со знаком "+", 2-й со знаком "-" при п/4
1) f(-3,5) = -0.5; f(-2,5) = 2; f(-1) = 0; f(2) = -1.
Здесь последовательно находим абсциссы х=-0,5; х=-2,5; х=-1; х=2, проводим прямую, параллельно оси оу до точки пересечения с графиком и называем, чему в этой точке равна ордината.
2) f(x)=-2,5, если х = 5 ; f(x)=-2, если х=3,5;
f(x)=0, если х=-3, х=-1, х=1,5;
f(x)=2, если х=0; х=-1,5, х=-2,5.
Здесь наоборот, по известной ординате, у=-2,5; у=-2; у=0; у=2 находим абсциссу х, их может быть несколько, т.к. прямая, параллельная оси ох пересекает график в нескольких точках, опускаем из этих точек перпендикуляры на ось ох и читаем ответы
3) Е(у) = [-2,5; 3]- это те значения, которые пробегает у. самое маленькое у=-2,5, самое большое у=3.