Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
2 этап составление математического описания изучаемого объекта - у нас геометрическая фигура четырехугольник , у которого все углы прямые и стороны попарно равны. Площадь прямоугольника ищется произведением его смежных сторон.
3 этап выбор метода решения уравнений математического описания и реализация его в форме моделирующей программы.
Метод использован составления уравнения , зная части сторон прямоугольника 7 частей одна сторона, и 6 частей другая. Пусть х- это 1 часть, тогда 7х и 6х смежные стороны. Уравнение: 7х*6х=168
42х²=168
х²=168/42
х²=4
х=√4
х=2
7*2=14 одна сторона и 6*2=12 вторая сторона