1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
Имеем бесконечно убывающую геометрическую прогрессию, |q| < 1
b2 = b1*q
b1 = b2/q
Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
=)