ответ: 900 единиц продукции 1-го типа, 150 единиц - 2-го типа и 600 единиц - 3-го типа.
Объяснение:
Пусть ежедневно выпускается x единиц продукции 1 типа, y единиц продукции 2 типа и z единиц продукции 3 типа. Отсюда следует система уравнений:
x+6*y+2*z=3000
3*x+2*y+z=3600
4*x+y+5*z=6750 ,
которую будем решать методом Крамера.
1. Составляем и вычисляем определитель системы:
Δ = 1 6 2 = - 67.
3 2 1
4 1 5
Так как Δ≠0, то система имеет единственное решение.
2. Составляем и находим определители Δ1, Δ2, Δ3:
Δ1 = 3000 6 2 = - 60300, Δ2 = 1 3000 2 = - 10050,
3600 2 1 3 3600 1
6750 1 5 4 6750 5
Δ3 = 1 6 3000 = - 40200
3 2 3600
4 1 6750
3. Отсюда x=Δ1/Δ=900, y=Δ2/Δ=150, z=Δ3/Δ=600.
x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный).
x - 1 < 4*V(x + 4)
Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1,
с учетом ОДЗ получаем -4 <= х < 1.
Пусть x >= 1.
Возведем обе части неравенства в квадрат
(x - 1)^2 < 16*(x + 4)
x^2 - 2*x + 1 < 16*x + 64
x^2 - 18*x - 63 < 0
Равенство верно на интервале между корнями уравнения.
Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21.
Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем
ответ: -4 <= х < 21.