Пусть l метров в час - скорость бурения 3 скважины, а t - время, через которое её глубина стала равной глубине второй скважины. Так как последняя равна 1*t=t метров в час, то получаем уравнение l*(t-1)=t. По условию, l*(t-1+1,5)=l*(t+0,5)=2*(t+1,5). Из первого уравнения находим l=t/(t-1). Подставляя это выражение во второе уравнение, получаем уравнение t(t+0,5)/(t-1)=(t²+0,5*t)/(t-1)=2t+3, или t²+0,5*t=(2t+3)(t-1), или t²+0,5*t=2t²+t-3, или t²+0,5t-3=0, или 2t²+t-6=0. Дискриминант D=1²-4*2*(-6)=49=7². Отсюда t=(-1+7)/4=1,5 часа, а l=t/(t-1)=1,5/0,5=3 метра в час. ответ: 3 метра в час.
Y = x^2 + 4x = 2 Здесь Все под один знак равно: y = x^2 + 4x - 2 Тогда графиком данной функции будет являться парабола! Приравниваем к 0 правую часть функции: x^2 + 4x - 2 = 0 Находим 2 точки параболы: m и n m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2 n = 4 -8 -2 = -6 Получились 2 точки: A (-2;0) и B (-6;0); Далее находим центральную точку нашей параболы путем нахождения дискриминанта: D = (b/2)^2 - ac. ("/"-дробная черта) D = 4 - 1 (-2) D = 6 Это примернооо 2,4 квадратный корень. x1/2 = -b/2 +- корень из D и все разделить на a. x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4 Дальше надо начертить систему координат, и расставить эти точки: A (-2;0); B (-6;0); C (-4,4; 0,4);
ответ:|2,3|=2,3, |0,5|=0,5, |-1,7|=1,7, |2 4/1|=2 4/1, |-3 4/9|=3 4/9.
Объяснение: