Уравнение прямой имеет вид y=ax+b, где a - угловой коэффициент, то есть угол наклона прямой, а значит, чтобы прямая была параллельна данной у неё должен быть такой же угловой коэффициент, в данном случае 4. Искомая прямая будет иметь вид y=4x+b. Если прямая проходит через точку (3;-1) это значит, что значению x 3 соответствует значение y -1. Составим уравнение: 4*3+b=-1,12+b=-1,b=-1-12, b=-13. Значит прямая параллельная прямой y=4x+2 и проходящая через точку А(3;-1), задается уравнением y=4x-13.
Y=x^3-3x Производная функции равна: y'=3x^2-3 Приравниваем производную к нулю: y'=0 3x^2-3=0 3(x^2-1)=0 x^2-1=0 x1=1 x2=-1 Отмечаем точки x=1 и х=-1на луче. Получаются три интервала: (минус бесконечность; -1], [-1;1] и [1; плюс бесконечность) Берём любую точку из каждого интервала и подставляем в производную (3x^2-3). Из интервала (минус бесконечность; -1] возьмём -2. 3*(-2)^2-3=3*4-3=12-3=9 9>0, значит, на этом интервале функция возрастает.
Из интервала [-1;1] возьмём 0. 3*0^2-3=-3 -3<0, значит, на этот отрезке функция убывает.
Из интервала [1; плюс бесконечность) возьмём 2. 3*2^2-3=12-3=9 9>0, значит, функция возрастает.
ответ: на (минус бесконечность; -1] функция возрастает, на [-1;1] убывает и на [1; плюс бесконечность) возрастает.
5m²-10mn+5n² = 5(m² - 10 mn + n²)=5(m-n)²