Катер проплыл 22км по течению и 36км против течения.за время необходимое для того чтобы проплыть 6 км на плоту.найдите скорость течения если собственная скорость катера 20км/час
Даны функции y=(x-1)^2+1 и y=-(x-3)^2+5. Раскроем скобки и приравняем, чтобы определить абсциссы точек пересечения графиков этих функций: х² - 2х + 1 + 1 = -(х² - 6х + 9) + 5, х² - 2х + 1 + 1 = -х² +6х - 9 + 5, 2х² - 8х + 6 = 0 или, сократив на 2: х² - 4х + 3 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-4)^2-4*1*3=16-4*3=16-12=4;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√4-(-4))/(2*1)=(2-(-4))/2=(2+4)/2=6/2=3;x_2=(-√4-(-4))/(2*1)=(-2-(-4))/2=(-2+4)/2=2/2=1. Имеем 2 точки пересечения: х = 1 и х = 3. Площадь общей части двух графиков равна интегралу:
Даны функции y=(x-1)^2+1 и y=-(x-3)^2+5. Раскроем скобки и приравняем, чтобы определить абсциссы точек пересечения графиков этих функций: х² - 2х + 1 + 1 = -(х² - 6х + 9) + 5, х² - 2х + 1 + 1 = -х² +6х - 9 + 5, 2х² - 8х + 6 = 0 или, сократив на 2: х² - 4х + 3 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-4)^2-4*1*3=16-4*3=16-12=4;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√4-(-4))/(2*1)=(2-(-4))/2=(2+4)/2=6/2=3;x_2=(-√4-(-4))/(2*1)=(-2-(-4))/2=(-2+4)/2=2/2=1. Имеем 2 точки пересечения: х = 1 и х = 3. Площадь общей части двух графиков равна интегралу:
х км/ч - скорость течения
22/(20+х)+36/(20-х)=6/х,
11x(20-x)+18x(20+x)=3(400-x^2),
220x-11x^2+360x+18x^2=1200-3x^2,
10x^2+580x-1200=0,
x^2+58x-120=0,
D1=961,
x1=-60<0,
x2=2;
2 км/ч