Y=-3x²+2x-4 при х=0 y=-4 корней нет поскольку дискриминант = b²-4ac=-44< 0 - парабола лежит под осью х. y'=-6x+2 -6x+2=0 6x=2 x=1/3 x∈(-∞; 1/3) y'> 0 возрастает x∈(1/3; ∞) убывает в точке х=1/3 максимум у=-3*1/9+2/3-4=-3 1/3 область определения r, ни четная ни нечетная. y''=-6 точек перегиба нет, выпукла вверх.
Заметим, что в системе х встречается только во второй степени. Поэтому, если некоторая пара (х; у) - решение системы, то и пара (-х; у) - решение системы. Так как по заданию система должна иметь только одно решение, то необходимо выполнение условия х=-х. Это достигается только при х=0. Подставляя значение х=0 в систему, получим: Проверим, удовлетворяют ли значения р=1 и р=-1 условию. При р=1: Данный случай не подходит, так как система имеет три решения. При р=-1: Данный случай подходит, система действительно имеет одно решение. Кроме того, можно было построить графики уравнений: - окружность с центром в точке (0; 0) и радиусом 1 - стандартная парабола ветвями вниз с вершиной в точке (0; р). Двигая эту параболу вдоль оси ординат, можно убедиться, что единственное пересечение с окружностью происходит лишь при р=-1. ответ: р=-1