Решаем с использованием формулы разности квадратов: a² - b² = (a - b)(a + b)
1) (х+1)² = 64 (х+1)² - 64 = 0 (х+1)² - 8² = 0 (х+1 - 8)(х+1 + 8) = (х - 7) (х + 9) = 0 Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем каждый из множителей к нулю. х - 7 = 0 х₁ = 7
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного которая должна выражать дату (в каком-то неизвестном представлении).
Обозначим второе число (дата), как тогда неизвестное число должно выглядеть, как: и должно выполняться равенство: или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго и приходящая в третий разряд:
– возможная добавочная единица, уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант: здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г. – дата 15/04/86 г. – дата 21/04/47 г. – дата 24/04/77 г. – дата 24/04/38 г.
------------------
Рассмотрим второй вариант: здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
a² - b² = (a - b)(a + b)
1)
(х+1)² = 64
(х+1)² - 64 = 0
(х+1)² - 8² = 0
(х+1 - 8)(х+1 + 8) =
(х - 7) (х + 9) = 0
Произведение равно нулю, если хотя бы один из множителей равен нулю.
Приравниваем каждый из множителей к нулю.
х - 7 = 0
х₁ = 7
х + 9 = 0
х₂ = - 9
Проверка
х₁ = 7
(7 + 1)² = 64
8² = 64
64 = 64
х₂ = - 9
(- 9 + 1)² = 64
(-8)² = 64
64 = 64
ответ: х₁ = 7; х₂ = - 9.
2)
Второе уравнение решаем аналогично.
(4х-9)² = 49
(4х-9)² - 49 = 0
(4х-9)² - 7² = 0
(4х-9 - 7)(4х-9 + 7) =
(4х - 16)(4х -2) = 0
Произведение равно нулю, если хотя бы один из множителей равен нулю.
Приравниваем каждый из множителей к нулю.
4х - 16 = 0
4х=16
х= 16 : 4
х₁ = 4
4х - 2 = 0
4х = 2
х = 2 : 4
х₂ = 0,5
Проверка
х₁ = 4
(4·4-9)² = 49
7² = 49
49 = 49
х₂ = 0,5
(4 · 0,5 -9)² = 49
(-7)² = 49
49 = 49
ответ: х₁ = 4; х₂ = 0,5.