Пусть х(грн) - стоит 1кг апельсинов, а у(грн) - стоит 1кг лимонов, тогда 5кг апельсинов стоят 5х(грн), а 6кг лимонов стоят 6у(грн), вместе они стоят 150грн, получаем уравнение 5х+6у=150. 4кг апельсинов стоят 4х(грн), а 3кг лимонов 3у(грн), раз 4кг апельсинов дороже на 3грн, то получим уравнение 4х-3у=3. Составим и решим систему уравнений:5х+6у=150,4х-3у=3;Решим систему сложения, умножив второе уравнение на 2, получим:5х+6у=150,8х-6у=6; 13х=156,4х-3у=3; х=12,48-3у=3; х=12,-3у=-45; х=12,у=15.12(грн)-стоит 1кг апельсинов15(грн)-стоит 1кг лимонов
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
Объяснение:
125
251
215
521
512
152
512 и 152 2-ге бөлінеді