Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
Решение: Обозначим объём вспашки всего поля за 1(единицу), а время вспашки всего поля Иваном за (х) часов, тогда время вспашки поля Григорием, согласно условия задачи, равно: (х+6) час Производительность работы Ивана в 1 час 1/х; Производительность работы Григория в 1 час 1/(х+6) А так как работая вместе они вспашут поле за 4 часа, то: 1 : [1/х/(х+6)]=4 1: [(х+6+х)/(х²+6х)]=4 1 : [(2х+6)/(х²+6х)]=4 х²+6х=(2х+6)*4 х²+6х=8х+24 х²+6х-8х-24=0 х²-2х-24=0 х1,2=(2+-D)/2*1 D=√(4-4*1*-24)=√(4+96)=√100=10 х1,2=(2+-10)/2 х1=(2+10)/2 х1=6 х2=(2-10)/2 х2=-4 - не соответствует условию задачи Время вспашки поля Иваном составляет 6 часов