1 задание
f(x)=x²+ 1
g(x)=x² − 1
Сравнить f(-10) и g(2)
Решение
1) f(-10)= (-10)²+ 1
f(-10)=100+ 1
f(-10)=101
2) g(2)= 2² − 1
g(x)=4 − 1
g(x)= 3
3) 101 > 3
значит f(-10)> g(2)
ответ: f(-10) > g(2)
2 задание
S(a)=a²
a — аргумент
S(a) — функция
1) a=1; S(a) = 1² = 1
2) a=2; S(a) = 2² = 4
3) a=3; S(a) = 3² = 9
4) a=4; S(a) = 4² = 16
5) a=5; S(a) = 5² = 25
Таблица
Сторона a, см ║ 1 ║ 2 ║ 3 ║ 4 ║ 5 ║
Площадь S(a), см² ║ 1 ║ 4 ║ 9 ║ 16 ║25 ║
3 задание
y = −a+3.
При каких значениях a значение функции равно −8?
Решение.
1) Значение функции - это у.
Значит, у= -8
2) Подставим вместо у число 8 и найдем а.
y = −a+3
-8 = −a+3
а = 8+3
а = 11
ответ: при а = 11
\[x_0=-\frac{b}{2a}=-\frac{0}{2\cdot \left(-1\right)}=0\]
Подставим найденную абсциссу в уравнение функции и найдем ее ординату:
\[y_0=-0^2+4=4\]
Итак, вершиной параболы будет точка (0; 4).
Далее нужно найти точки, которые принадлежат графику параболы. Сделать это легко. Берем несколько произвольных значений переменной х и вычисляем для них значение переменной у. Полученные пары чисел будут координатами искомых точек.
х = 1: y\left(1\right)=-1^2+4=3 —точка с координатами (1; 3).
х = 2: y\left(2\right)=-2^2+4=0 —точка с координатами (2; 0).
х = —1: y\left(-1\right)=-{\left(-1\right)}^2+4=3 —точка с координатами (—1; 3).
х = —2: y\left(-2\right)=-{\left(-2\right)}^2+4=0 —точка с координатами (—2; 0). Нанесем найденные точки на координатную плоскость и начертим график функции y = —x^2 + 4
(Рисуешь точку и проводишь линии в право ,влево ,вперед и назад.Расставляешь числа ,рисуешь дугу с самого низа до верха по второе число и спускаешься вниз)Думаю понятно объяснила.