#1. у=х ^2.
Подставить координаты точки в уравнение. Если получится верное равенство, то точка принадлежит графику функции, если нет - не принадлежит.
а) А( 6; 36) : 36=6^2
36=36 ответ:принадлежит
б) В(-1,5; 2,25): 2,25=(-1,5)^2
2,25=2,25 ответ:принадлежит
в) С( 4; -2): -2=4^2
-2<>16 ответ: не принадлежит
г) Д(1,2; 1,44): 1,44=1,2^2
1,44=1,44 ответ:принадлежит
# 2. При каких значениях а точка Р( а; 64) принадлежит графику функции
а) у=х ^2. 64=x^2
x1=8, x2=-8 ответ: Р( 8; 64) и Р( -8; 64)
б) у= х^3. 64=x^3
x=4 ответ: Р( 4; 64)
Объяснение: x=1+log_4[(-1)^(k+1)*π/6+π*k/2], где k∈N.
Пусть 4^(x-1)=α, тогда 4^x=4*α и неравенство перепишется так:
sin(4*α)/{[(cos(α)+sin(α)]*[(cos(α)-sin(α)]}=-√3. Так как [(cos(α)+sin(α)]*[(cos(α)-sin(α)]=cos²(α)-sin²(α)=cos(2*α), то неравенство примет вид sin(4*α)/cos(2*α)=-√3. И так как sin(4*α)=2*sin(2*α)*cos(2*α), то числитель и знаменатель сокращаются на cos(2*α) и неравенство принимает окончательный вид: 2*sin(2*α)=-√3, или sin(2*α)=-√3/2. Отсюда 2*α=(-1)^k*(-π/3)+π*k, где k∈Z и тогда α=(-1)k*(-π/6)+π*k/2=(-1)^(k+1)*π/6+π*k/2, где k∈Z. Но так как α=4^(x-1)>0, то отрицательные значения k и значение k=0 не годятся, поэтому α=4^(x-1)=(-1)^(k+1)*π/6+π*k/2, где k∈N. Отсюда x-1=log_4[(-1)^(k+1)*π/6+π*k/2] и тогда x=1+log_4[(-1)^(k+1)*π/6+π*k/2], где k∈N.