Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
Задать вопрос
Войти
АнонимМатематика09 ноября 14:55
Решите систему уравнений методом алгебраического сложения 2x^2+3y^2=14. -x^2+2y^2=7
ответ или решение1
Харитонова Светлана
Решим заданную систему уравнений методом алгебраического сложения:
2х^2 + 3у^2 = 14;
-х^2 + 2у^2 = 7.
1. Умножим второе уравнение на 2:
2х^2 + 3у^2 = 14;
-2х^2 + 4у^2 = 14.
2. Выполним прибавление первого и второго уравнения:
2х^2 - 2х^2 + 3у^2 + 4у^2 = 14 + 14;
7у^2 = 28;
у^2 = 28 : 7;
у^2 = 4;
у1 = 2;
у2 = -2.
3. Подставим значение у в первое уравнение и найдем значение х:
2х^2 + 3 * 2^2 = 14;
2х^2 + 3 * 4 = 14;
2х^2 + 12 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 2 : 2;
х^2 = 1;
х1 = 1;
х2 = -1.
2х^2 + 3 * (-2)^2 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 1;
х1 = 1;
х2 = -1.