х - чисельник дробу;
х + 3 - знаменник дробу;
х + 2 - збільшили чисельник на 2;
х + 13 - збільшили знаменник на 10;
Складаємо рівняння:
х/(х + 3) - (х + 2)/(х + 13) = 2/15|·15(x + 3)(x + 13);
15x(x + 13) - 15(x + 2)(x + 3) = 2(x + 3)(x + 13);
15x² + 13·15x - 15(x² + 5x + 6) = 2(x² + 16x + 39);
15x² + 13·15x - 15x² - 5·15x - 90 = 2x² + 32x + 78;
8·15x - 90 = 2x² + 32x + 78;
2x² + 32x + 78 - 120x + 90 = 0;
2x² - 88x + 168 = 0;
x² - 44x + 84 = 0;
x₁ = 42; x₂ = 2.
Отже, чисельник дробу дорівнює 42 або 2, тоді знаменник - 42 + 3 = 45 або 2 + 3 = 5. Маємо дроби 42/45 (не задовольняє умову задачі, оскільки скоротний дріб) і 2/5.
Відповідь: 2/5.
ОДЗ
х-2≥0
x≥2
x∈[2; +∞)
(x-2)=t⁸
t⁸+t-2=0
Здесь первый корень можно путем сложения коэффициентов, если при сложении получается 0, то один из корней равен 0.
t=1
1+1-2=0
Значит один из множителей (t-1). Проведем деление многочленов.
_t⁸+t-2 I t-1
t⁸-t⁷ t⁷+t⁶+t⁵+t⁴+t³+t²+t-2
_t⁷+t
t⁷-t⁶
_t⁶+t
t⁵- t⁴
_ t⁴+t
t⁴- t³
_t³+t
t³- t²
_t²+t
t² -t
_ 2t-2
2t-2
0
(t⁷+t⁶+t⁵+t⁴+t³+t²+t-2)(t-1)=0
Если мы посмотрим на уравнение 8 степени, то можно увидеть, что чем больше число (+ или -), тем дальше значение уравнения от 0.
Значит надо искать корни в пределах [-1;1].
t⁷+t⁶+t⁵+t⁴+t³+t²+t-2 - действительных корней не имеет. Значит
t=1
Проведем обратную замену.
x-2=1
x=3