Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7
1)
16π/15 = π + (π/15)
17π/16 = π + (π/16)
На отрезке [π/2; 3π/2] функция sin убывает, то есть большему аргументу соответствует меньшее значение функции (на этом отрезке).
Итак,
π/2 < 17π/16 < 16π/15 < 3π/2
sin(π/2) > sin(17π/16) > sin(16π/15) > sin(3π/2)
1 > sin(17π/16) > sin(16π/15) > -1
2)
4/7 > 5/9
проверим это, домножим данное неравенство на положительное число (7·9)
4·9 > 5·7
36 > 35. Истина,
итак
4/7 > 5/9
домножим последнее неравенство на отрицательное число (-1)
-4/7 < -5/9
домножим последнее неравенство на положительное число π
-4π/7 < -5π/9
функция ctg - это убывающая функция на интервале (-π; 0), то есть большему значению аргумента соответствует меньшее значение функции (для этого интервала).
-π < -4π/7 < -5π/9 < 0
ctg(-4π/7) > ctg(-5π/9)
дробь несократима.
Объяснение:
(5a-25b)/(2a²+10ab) = 5(a-5b)/(2a(а+5b)). Данная дробь несократима.
Если в условии ошибочно записан знак, то решение может быть таким:
(5a-25b)/(2a²-10ab) = 5(a-5b)/(2a(а-5b)) = 5/(2а).