М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
АлфавитABC
АлфавитABC
03.07.2021 06:00 •  Алгебра

Объясните Найдите координаты вершины параболы
f(x)=−x²−4x+1
В ответе укажите последовательно абсциссу и ординату вершины без пробелов и знаков препинания.

👇
Ответ:
аслан91
аслан91
03.07.2021

Хв=-b/2a= -4/2=-2, Yв=-4+8+1=5

ответ (-2;5), по условию ответ -25

4,7(79 оценок)
Открыть все ответы
Ответ:
елена1180
елена1180
03.07.2021

1) У выражение  2x - 3 - (5x - 4). Для этого откроем скобки и приведем подобные слагаемые. Для открытия скобок будем использовать правило открытия скобок перед которыми стоит знак минус.

2x - 3 - (5x - 4) = 2x - 3 - 5x + 4 = 2x - 5x + 4 - 3 = x(2 - 5) + 1 = -3x + 1.

ответ: -3x + 1.

2) Зависит ли от значения х значение выражения 3(2x - 1) - 2(5x - 4) - (2 - 4x)?

Открываем скобки и приводим подобные:

3(2x - 1) - 2(5x - 4) - (2 - 4x) = 6x - 3 - (10x - 8) - 2 + 4x = 6x - 3 - 10x + 8 - 2 + 4x = 6x + 4x - 10x - 3 + 8 - 2 = 3. Выражение не зависит от переменной.

Объяснение:

4,7(66 оценок)
Ответ:
dilfuza2105
dilfuza2105
03.07.2021
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:

b1/(1+q)=16/3;
b1*q=4

Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.  
4,6(89 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ