Объяснение: x=1+log_4[(-1)^(k+1)*π/6+π*k/2], где k∈N.
Пусть 4^(x-1)=α, тогда 4^x=4*α и неравенство перепишется так:
sin(4*α)/{[(cos(α)+sin(α)]*[(cos(α)-sin(α)]}=-√3. Так как [(cos(α)+sin(α)]*[(cos(α)-sin(α)]=cos²(α)-sin²(α)=cos(2*α), то неравенство примет вид sin(4*α)/cos(2*α)=-√3. И так как sin(4*α)=2*sin(2*α)*cos(2*α), то числитель и знаменатель сокращаются на cos(2*α) и неравенство принимает окончательный вид: 2*sin(2*α)=-√3, или sin(2*α)=-√3/2. Отсюда 2*α=(-1)^k*(-π/3)+π*k, где k∈Z и тогда α=(-1)k*(-π/6)+π*k/2=(-1)^(k+1)*π/6+π*k/2, где k∈Z. Но так как α=4^(x-1)>0, то отрицательные значения k и значение k=0 не годятся, поэтому α=4^(x-1)=(-1)^(k+1)*π/6+π*k/2, где k∈N. Отсюда x-1=log_4[(-1)^(k+1)*π/6+π*k/2] и тогда x=1+log_4[(-1)^(k+1)*π/6+π*k/2], где k∈N.
а)Решение системы уравнений (3; -1);
б)Решение системы уравнений (2; 1).
Объяснение:
Решите систему уравнений:
а)x-y=4
x+y=2 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при у одного значения и с противоположными знаками:
Складываем уравнения:
х+х-у+у=4+2
2х=6
х=3
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
x+y=2
у=2-х
у=2-3
у= -1
Решение системы уравнений (3; -1)
б) 3x-2y=4
2x+3y=7 методом подстановки
Разделим второе уравнение на 2 для упрощения:
3x-2y=4
x+1,5y=3,5
Выразим х через у во втором уравнении, подставим выражение в первое уравнение и вычислим у:
х=3,5-1,5у
3(3,5-1,5у)-2y=4
10,5-4,5у-2у=4
-6,5у=4-10,5
-6,5у= -6,5
у= -6,5/-6,5
у=1
х=3,5-1,5у
х=3,5-1,5*1
х=2
Решение системы уравнений (2; 1)
Дам решение задачи, а целочисленные размеры определить самостоятельно вас не затруднит.
Пусть длина стены в квадратной комнате х м
Тогда длина стены в прямоугольной комнате х+2, а ширина х+1
Площадь пола квадратной комнаты
х²
прямоугольной комнаты
(х+2)(х+1)
х²+х+2х+2=х²+3х+2
а общая площадь, подлежащая покрытию лаком равна
х²+3х+2+х²=2х²+3х+2
На всю эту площадь достаточно не более 5 кг лака.
Если на 0,74 м² достаточно 0,1 кг лака, то площадь комнат вычислим из пропорции:
0,1— 0,74
5— х
х=37 м²
Не менее 37 м² можно отлакировать.
Составим и решим квадратное уравнение:
2х²+3х+2=37
2х²+3х-35=0
Уравнение имеет 2 корня,один из них отрицательный и не подходит.
х=3,5
Стороны квадратной комнаты могут быть по 3, 5 м,
а прямоугольной одна 4,5м , вторая 5,5 м