В решении.
Объяснение:
Представьте в виде многочлена выражение:
(0,8a + 0,9b)(0,8a - 0,9b) = 0,64a² - 0,81b².
Представьте в виде многочлена выражение:
(8x⁴+9y)(8x⁴−9y) = 64х⁸ - 81у².
Разложите на множители:
0,01m⁶−2,56n⁶ = (0,1m³ - 1,6n³)(0,1m³ + 1,6n³).
Разложите на два множителя:
36x²−1,21y² = (6х - 1,1у)(6х + 1,1у).
Представьте в виде многочлена выражение:
(0,4a+3b)(0,4a−3b) = 0,16a² - 9b².
Выполните умножение многочленов:
(2a²+0,1)(2a²−0,1) = 4a⁴ - 0,01.
Разложите на два множителя:
49m²−289n² = (7m - 17n)(7m + 17n).
Разложите на множители:
a⁴−0,16b⁴ = (a² - 0,4b²)(a² + 0,4b²).
Выполните умножение многочленов:
(0,3x+6)(0,3x−6) = 0,09x² - 36.
Разложите на множители:
0,49m⁶−225n⁶ = (0,7m³ - 15n³)(0,7m³ + 15n³).
Разложите на два множителя:
0,09x²−1,96y² = (0,3x - 1,4y)(0,3x + 1,4y).
Представьте в виде многочлена выражение:
(7x⁴+0,8y³)(7x⁴−0,8y³) = 49x⁸ - 0,64y⁶.
Выполните возведение в квадрат:
(1,6+0,5a)² = 2,56 + 1,6a + 0,25a².
Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
(х-у)-m=x-y-m