М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
франческа033
франческа033
01.05.2021 09:37 •  Алгебра

2. Периметр треугольника равен 24 см. Найдите пери-
метр треугольника, вершинами которого служат сере-
дины сторон данного треугольника.
А. 12 см.
С. 48 см.
В. 6 см.
D. 10 см.
РЕШИТЕ С РЕШЕНИЕМ ​

👇
Ответ:
nakao85
nakao85
01.05.2021

12

Объяснение:

Стороны меньшего вписанного треугольника являются средними линиями исходного и равны половине длины соответствующих им сторон

Т. о. периметр малого треугольника будет равен половине периметра исходного треугольника, т. е. 12 см

4,6(15 оценок)
Открыть все ответы
Ответ:
ayato0haruka
ayato0haruka
01.05.2021

ответ:

объяснение:

план действий : 1) ищем производную;

                            2) приравниваем её к нулю и решаем получившееся уравнение ( ищем критические точки);

                            3) ставим найденные числа на числовой прямой и проверяем знаки производной на каждом промежутке;

                              4) пишем ответ.

поехали?

1) у' = -2x +2

2) -2x +2 = 0

    -2x = -2

        x = 1

3) -∞         1           +∞

            +         -

4) ответ: при  х  ∈ (-∞; 1) функция возрастает

                при х  ∈ (1; +∞( функция убывает

4,4(13 оценок)
Ответ:
Макс332211
Макс332211
01.05.2021
Функция
y= \frac{x-5}{x^2-25} = \frac{x-5}{(x-5)(x+5)}
определена на всей числовой оси, кроме двух точек: x = -5 и  x = 5.

Найдём односторонние пределы в этих точках.

1) x = -5. Т.к. в этой точке множитель (x-5) не равен нулю, то его можно сократить.
\lim_{x \to \inft{-5_{-0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{-5_{-0}}} \frac{1}{x+5} =-\infty \\ \\ \lim_{x \to \inft{-5_{+0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{-5_{+0}}} \frac{1}{x+5} =+\infty

Оба односторонних предела бесконечны, значит, функция терпит разрыв II рода в точке x = -5. Кстати, уравнение x = -5 есть уравнение вертикальной асимптоты в точке разрыва.

2) x = 5. В этой точке множитель (x + 5) равен 10.
\lim_{x \to \inft{+5_{-0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{+5_{-0}}} \frac{1}{x+5} *\lim_{x \to \inft{+5_{-0}}} \frac{x-5}{x-5}= \\ \\ \frac{1}{10} *1=\frac{1}{10} \\ \\ \lim_{x \to \inft{+5_{+0}}} \frac{x-5}{(x-5)(x+5)} =\lim_{x \to \inft{+5_{+0}}} \frac{1}{x+5} *\lim_{x \to \inft{+5_{+0}}} \frac{x-5}{x-5}= \\ \\ \frac{1}{10} *1=\frac{1}{10}

В точке x = 5 функция терпит разрыв, т.к. на ноль делить нельзя. Однако односторонние пределы конечны, следовательно, это точка разрыва I рода. При этом односторонние пределы совпадают, справа и слева значение функции бесконечно приближается к 1/10. Значит, этот разрыв устранимый.
Итак, в точке x = 5 функция терпит устранимый разрыв I рода.

Из выше изложенного можно сделать некоторые представления о графике нашей функции. Во-первых, функция слева направо бесконечно убывает, приближаясь к точке х = -5. Во-вторых, справа от точки х = - 5 функция убывает из плюс бесконечности. В точке х = 5 она терпит устранимый разрыв, продолжая дальше убывать.
Найдём горизонтальные асимптоты.
\lim_{x \to -\infty} \frac{x-5}{(x-5)(x+5)}=\lim_{x \to -\infty} \frac{1}{x+5}= \lim_{x \to -\infty} \frac{1}{x(1+5/x)}= \\ \\ = \frac{1}{-\infty}(1+ \frac{5}{-\infty}} )}=\frac{1}{-\infty}(1+ 0)}=-0 \\ \\ \lim_{x \to +\infty} \frac{x-5}{(x-5)(x+5)}=\lim_{x \to +\infty} \frac{1}{x+5}= \lim_{x \to +\infty} \frac{1}{x(1+5/x)}= \\ \\ = \frac{1}{+\infty}(1+ \frac{5}{+\infty}} )}=\frac{1}{+\infty}(1+ 0)}=+0

Горизонтальная асимптота y = 0. Функция бесконечно приближается к нулю, влево, в минус бесконечность, снизу, справа, в плюс бесконечность, сверху.

* Функция непрерывна при x ∈(-∞; -5) ∪ (-5; 5) ∪ (5; +∞).
* В точке x = -5 разрыв II рода, в точке x = 5 устранимый разрыв I рода.
4,6(31 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ