1.12a-10a-10b+6b=2a-4b
2. 12х-2+7
12х=7-2
12х=5
12:5=2,4
Наибольшее значение производной следует искать в точке или в точках, где функция возрастает, т.е. в точках -2 и 3, там значения производной положительны. угловой коэффициент касательной к графику функции в точке с абсциссой -2 и (или ) 3, равен значению производной функции в точке касания; к= tgα; здесь α- угол между касательной и положительным направлением оси абсцисс. угол наклона в точке х=-2 больше, нежели угол наклона в точке х=3. Наибольшее значение производной функции в этой точке х=-2. Что касаемо остальных двух точек, -1 и 1, то в них функция убывает, а производные, стало быть, отрицательны, и быть наибольшими в этих точках не могут.
Надо приравнять log2(х) = 5 - log2(x+14).
log2(х) + log2(x+14) = 5.
Сумма логарифмов равна логарифму произведения, а цифру 5 представим так: 5 = log2(32).
log2(х*(x+14)) = log2(32).
При равных основаниях логарифмирумые выражения равны.
х*(x+14) = 32. Раскроем скобки:
х² + 14х - 32 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=14^2-4*1*(-32)=196-4*(-32)=196-(-4*32)=196-(-128)=196+128=324;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√324-14)/(2*1)=(18-14)/2=4/2=2;
x_2=(-√324-14)/(2*1)=(-18-14)/2=-32/2=-16 - не принимаем по ОДЗ.
По значению абсциссы х = 2 находим ординату:
y=log2(2) = 1.
решение смотри на фотографии
Объяснение: