М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДевочКаНауКи
ДевочКаНауКи
05.02.2022 05:50 •  Алгебра

Решите систему уравнений
X+3y=15
2x-3y^2 =-6

👇
Ответ:
саша4246
саша4246
05.02.2022

4+4+6=90

Объяснение:

4+4-8+646

4,4(66 оценок)
Открыть все ответы
Ответ:
matema2
matema2
05.02.2022
А) 1812 * 1941 * 1965
При перемножении 1812 * 1941 на конце будет цифра 2.
Если число, оканчивающееся на 2 (чётное), умножить на 1965, то на конце будет 0.
Итак, 1812 * 1941 * 1965 = ......0

б) (116 + 17^{17})^{21}
Важно узнать, какая цифра будет на конце при возведении числа 17 в семнадцатую степень. Для упрощения, можно пробовать возводить в степень не 17, а число 7.
7^1 = 7
7^2 = 49
7^3 = 343
7^4 = 2401
7^5 = 16807 (на конце вновь цифра 7)
7^6 = ......9 (далее всё будет повторяться)
Т.е. через каждые 4 возведения в степень последняя цифра повторяется.
Цифра 7 на конце будет после возведения в степень 1, 5, 9, 13, 17.
Значит, 17^17 = .......7
К числу с последней цифрой 7 прибавляется число 116, следовательно, на конце будет цифра 3.
Число с последней цифрой 3 возводится в 21 степень.
...3^1 = ...3
...3^2 = ...9
...3^3 = ...7
...3^4 = ...1
...3^5 = ...3 (на коце снова цифра 3)
...3^6 = ...9 (далее всё будет повторяться)
Т.е. через каждые четыре возведения в степень последняя цифра повторяется. Цифра 3 на конце будет после возведения в степень 1, 5, 9, 13, 17, 21. Следовательно, на конце будет цифра 3. В целом, тоже на конце цифра 3:
(116 + 17^{17})^{21}=........3
4,6(67 оценок)
Ответ:
Max70777
Max70777
05.02.2022
Если m и n делятся на 31, то 11m+xn делится на 31 при любом x, минимальный натуральный x - это 1. Если m или n не делится на 31, то и второе из этих чисел не делится на 31, так как иначе 17m+6n не делилось бы на 31. Пусть m и n не делятся на 31 и значит взаимно просты с 31. Если 17m+6n≡0(mod 31) (то есть 17m+6n делится на 31) и 11m+xn≡0(mod 31) (в дальнейшем будем опускать (mod 31)), то 
11(17m+6n)-17(11m+xn)≡0, (66-17x)n≡0, а так как n взаимно просто с 31, 
66-17x≡0; 66-2·31-17x≡0; 17x-4≡0; 2(17x-4)≡0; 34x-8≡0; 34x-31x-8≡0;
3x-8≡0; угадываем x=13 (3·13-8=31 делится на 13); множество всех решений описывается формулой x=13+31p; минимальное натуральное из них - это x=13.

Проверим, что на самом деле x=13 подходит. В самом деле, 
11(17m+6n)-17(11m+13n)=-155n=-31·5n делится на 31, а раз 17m+6n делится на 31, то и 11m+13n делится на 31

ответ: x=13
4,6(36 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ