М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ruslanlezgi
ruslanlezgi
28.01.2021 04:24 •  Алгебра

Мотоциклист, двигавшийся со скоростью v1 = 20 м/с, сразу после знака «ремонт дороги» начинает тормозить, так что его дальнейшее движение – равнозамедленное с ускорением, равным по модулю 0,25 м/с2. спустя 30 с (с момента начала торможения мотоциклиста) мимо знака со скоростью v2 = u м/с проезжает грузовой автомобиль и продолжает двигаться с прежней скоростью. при каких значениях скорости u грузовик догонит мотоциклиста до того, как тот остановится?

👇
Ответ:
Аббос1111
Аббос1111
28.01.2021

v1=20 м/с

а= - 0.25 м/с2  - при торможениии ускорение с  (-)

t=20c

v2= u м/с = const

v=0 конечная скорость мот-та

 

расстояние между знаком и точкой остановки S=(v^2-v1^2) /2a=(0-20^2) / (2*-0.25)=800м

время торможения мотоциклиста  t1= (v-v1) /a =(0-20)/(-0.25) =80c

тогда грузовику ,чтобы догнать мотоцикл  ДО ОСТАНОВКИ осталось время  

t2=t1-t =80-20=60c

минимальная скорость грузовика  u(min) = S/t2=800 м / 60 с =13,3 м/с

при миним скор. ГРУЗ догонит в точке остановки

если скорость будет больше,то догонит раньше

ответ  u > 13, 3 м/с

 

 

4,6(15 оценок)
Открыть все ответы
Ответ:
KrASaVa307
KrASaVa307
28.01.2021
V - знак квадратного корня
V(5x+7) - V(x+4) =4x+3
ОДЗ:
{5x+7>=0
{x+4>=0

{5x>= -7
{x>= -4

{x>=-7/5
{x>= -4

Чтобы избавиться от рациональности, возведем все члены уравнения в квадрат, но для этого правая часть уравнения должна быть положительной: 4x+3>=0; x>= -3/4
У нас получилась следующая ОДЗ:
{x>= -7/5
{x>= -4
{x>= -3/4
Решением этой системы будет промежуток: [-3/4; + бесконечность)
Итак, возводим в квадрат:
(5x+7)^2 - (x+4)^2 = (4x+3)^2
25x^2+70x+49-x^2-8x-16=16x^2+24x+9
24x^2+62x+33= 16x^2+24x+9
24x^2+62x+33-16x^2-24x-9=0
8x^2+38x+24=0 |:2
4x^2+19x+12=0
D= 19^2-4*4*12=169
x1=(-19-13)/8=-4  - это посторонний корень, т.к. не входит в промежуток [-3/4; + беск.)
x2=(-19+13)/8= -3/4
Получается, что уравнение имеет один корень => k=1
Корень x=-3/4 принадлежит интервалу (-1;0), значит q=-3/4
Решим уравнение 5k+4q= 5*1+4*(-3/4)=5-3=2
ответ:2
4,6(51 оценок)
Ответ:
Aldiyar26
Aldiyar26
28.01.2021
Алгоритм поиска.
Ищем точки экстремума по условию y'=0. Определяем, является ли точка минимумом или максимумом по критерию изменения знака y' в данной точке: если знак y' изменяется с "+" на "-", то функция имеет максимум; если с "-" на "+" - минимум; если не изменяется - не является экстремумом.
Наибольшее значение на отрезке определяется как максимальное значение среди всех максимумов функции на отрезке и значений функции на концах отрезка.
Наименьшее значение функции определяется как минимальное значение среди всех минимумов на отрезке и значений функции на концах отрезка.

5.10
a) y = x³ - 3x²; отрезок [-1; 3]

y(-1) = (-1)³-3(-1)² = -1-3 = -4
y(3) = 3³-3*3² = 0

y'=3x²-6x=3x(x-2). Точки, подозрительные на экстремум: x=0; x=2. При x∈(0;2) y'<0 (функция y убывает (y↓)), при x∉(0;2) y'>0 (функция y возрастает (y↑)).
y(0) = 0
y(2) = 2³-3*2² = 8-12 = -4

Слева от точки (0;0) функция y возрастающая, справа - убывающая. Значит, точка (0;0) является локальным максимумом.
Слева от точки (2;-4) функция y убывающая, справа - возрастающая. Значит, точка (2;-4) является локальным минимумом.

Наибольшее значение функции y на отрезке [-1;3] равно max (y(-1),y(0),y(3)) = max (-4,0,0) = 0 (достигается в точках x=0 и x=3.
Наименьшее значение функции y на отрезке [-1;3] равно min (y(-1),y(2),y(3)) = min (-4,-4,0) = -4 (достигается в точках x=-1 и x=2.

В остальных решениях я буду писать кратко.

б) y = 2x³ - 6x² + 9; отрезок [-2; 2]

y(-2) = 2(-2)³ - 6(-2)² + 9 = -16 - 24 + 9 = -31
y(2) = 2(2)³ - 6(2)² + 9 = 16 - 24 + 9 = 1

y' = 2*3x² - 6*2x = 6x(x-2)
y'=0 ⇒ x∈{0;2}

x∈(0;2) ⇒ y'<0 ⇒ y↓
x∉[0;2] ⇒ y'>0 ⇒ y↑

y(0) = 9

(0;9): y слева ↑, справа ↓ ⇒ (0;9) - локальный максимум
(2;1): y слева ↓, справа ↑ ⇒ (2;1) - локальный минимум

max (y(-2),y(0)) = max (-31,9) = 9 ⇒ x=0
min (y(-2),y(2)) = min (-31,1) = -31 ⇒ x=-2

5.11
а) y = 2x³ - x²; отрезок [-1; 1]

y(-1) = 2(-1)³ - (-1)² = -2 - 1 = -3
y(1) = 2(1)³ - (1)² = 2 - 1 = 1

y' = 2*3x² - 2x = 2x(3x-1)
y'=0 ⇒ x∈{0;1/3}

x∈(0;1/3) ⇒ y'<0 ⇒ y↓
x∉[0;1/3] ⇒ y'>0 ⇒ y↑

y(0) = 0
y(1/3) = 2(1/3)³ - (1/3)² = 2/27 - 1/9 = -1/27

(0;0): слева y↑, справа y↓ ⇒ (0;0) - локальный максимум
(1/3;-1/27): слева н↓, справа y↑ ⇒ (1/3;-1/27) - локальный минимум

max (y(-1),y(0),y(1)) = max (-3,0,1) = 1 ⇒ x=1
min (y(-1),y(1/3),y(1)) = min (-3,-1/27,1) = -3 ⇒ x=-1

б) y = 2x³ + 6x² + 8; отрезок [-3; 2]

y(-3) = 2(-3)³ + 6(-3)² + 8 = -54 + 54 + 8 = 8
y(2) = 2(2)³ + 6(2)² + 8 = 16 + 24 + 8 = 48

y' = 2*3x² + 6*2x = 6x(x+2)
y'=0 ⇒ x∈{-2;0}

x∈(-2;0) ⇒ y'<0 ⇒ y↓
x∉[-2;0] ⇒ y'>0 ⇒ y↑

y(-2) = 2(-2)³ + 6(-2)² + 8 = -16 + 24 + 8 = 16
y(0) = 8

(-2;16): слева y↑, справа y↓ ⇒ (-2;16) - локальный максимум
(0;8): слева y↓, справа y↑ ⇒ (0;8) - локальный минимум

max (y(-3),y(-2),y(2)) = max (8,16,48) = 48 ⇒ x=2
min (y(-3),y(0),y(2)) = min (8,8,48) = 8 ⇒ x∈{-3;0}
4,7(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ