Напишем формулу для суммы 9 членов геометрической прогрессии
s9=(b1*(q^9-1))/(q-1)
Напишем формулу для суммы 18 членов геометрической прогрессии
s18=(b1*(q^18-1))/(q-1)
512=2^9
s9/(s18-s9)=2^9
GПеревернем дробь
(s18-s9)/s9=1/2^9
Числитель разделим на знаменатель почленно.
1-s18/s9=1/2^9 Отдельно упростим дробь s18/s9
s18/s9=(b1*(q18-1)/(q-1))/(b1*(q9-1)/(q-1)
Сократятся b1 и (q-1)
s18/s9=(q18-1)/(q9-1) разность квадратов
s18/s9=((q:9-1)*(q^9+1))/(q9-1) Сократим на (q^9-1)
s18/s9=q^9+1
Возвращаемся к уравнению
1-s18/s9=1/2^9
1-q^9+1=1/2^9
-q^9=1/2^9
q=-1/2
2x+3/x(x-2)-x-3/x(x+2) Одз:х не равен 0,2,-2.
(2x+3)(x+2)-(x-3)(x-2)=0
2x^2+4x+3x+6-x^2+2x+3x-6=0
X(x+12)=0
x =0 и х= -12
х=0 принадлежит одз ответ:х=-12
а)
sqrt(7)-sqrt(5) ??? sqrt(13)-sqrt(11)
умножим обе части на (sqrt(7)+sqrt(5))(sqrt(13)+sqrt(11)) > 0 и обнаружим разность квадратов
(7-5)(sqrt(13)+sqrt(11) ??? (13-11)(sqrt(7)+sqrt(5))
2(sqrt(13)+sqrt(11) ??? 2(sqrt(7)+sqrt(5))
очевидно, что sqrt(13)>sqrt(7) и sqrt(11)>sqrt(5)
значит левая часть больше правой
б)
(sqrt(2) - 2) x > sqrt(2) + 2
умножим обе части на (sqrt(2) + 2) >0
(sqrt(2) + 2)((sqrt(2) - 2)) x > (sqrt(2) + 2)^2
(2-4)x > 2+4sqrt(2)+4
x<-3-2sqrt(2)
правая часть ~ -5.8
наибольшее целое x = -6