Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
если х - количество дней работы, то можно составить уравнение: (54+6)(х-1)=54*х+18 (54+6) - птому, что в день изготавливали на 6 деталей больше нормы (х-1) - потому, что они за день день до срока изготовили боьше нормы 54*х - сколько должны были изготовить при нормальной работе в срок +18 - т.к. изготовили на 18 деталей больше необходимого
получаем уравнение 54х-54+6х-6=54х+18 отсюда: 6х=18+54+6 отсюда х=13 ( т.к. они выполнили план за 1 день до срока, то кол-во дней равно х-1=12)
Также можно число х, принять кол-во дней, за которые рабочие управились, тогда уравнение будет иметь вид: (54+6)*х=54*(х+1)+18 решается аналогично
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)