Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Высота - это перпендикуляр к стороне треугольника, то есть когда проводишь высоту получается 2 равных прямоугольных треугольников. Получается высота - это катет прямоугольного треугольника, а второй катет - это сторона равностороннего треугольника деленная пополам. Тогда тебе неизвестен катет, ищем его из теоремы (не помню как называется, по моему Пифагора) Что сумма квадратов катетов равна квадрату гипотинузы. Допустим один катет будет А, другой В, гипотинуза С. И получается А, В=6/2=3, С=6. Вот твое уравнение: А в квадрате+3 в квадрате= 6 в квадрате А в квадрате= 36-9 А в квадрате= 27 А = корень из 27
отметь как лучший если тебе не сложно!