3,8-1,5х + (4,5х-0,8)=2, 4х + 3
3,8-1, 5х+4, 5х-0, 8=2, 4х+3
3+3х=2, 4х+3
3х=2, 4х
3х-2, 4х=0
0,6х=0
х=0
Объяснение:
Не знаю правильно ли этот ответ
Дан треугольник с вершинами A(-4; 0), B(4:0), C(0; 2).
Так как точки даны на осях, то легко определяем длины сторон его.
АВ = 4-(-4) = 8.
АС = ВС = √(4² + 2²) = √(16 + 4) = √20 = 2√5.
Определяем радиус описанной окружности:
R = (abc)/(4S).
Площадь треугольника S = (1/2)*AB*H = (1/2)*8*2 = 8 кв.ед.
Тогда R = (2√5*8*2√5)/(4*8) = 5.
Теперь можно разложить вектор DC по векторам DA и DB, построением параллелограмма.
Проводим диагональ FG.
Из подобия треугольников DOB и DHG находим:
DG = (3/5)DB, DF = (3/5)DA.
Но так как DA = DB, то DG = DF.
ответ: DC = (3/5)(DA + DB).
1) 64m^3 -1 = (4m)^3 - 1^3 = (4m - 1)*(16m^2 + 4m + 1)
2) (x-3)*(x^2 +3x +9) - x(x^2 -16) = 21
x^3 - 3^3 - x^3 + 16x^2 = 21
16x^2 = 21 + 27
16x^2 = 48
x^2 = 3
x_1 = -V3, x_2 = V3
3) (a+3)^3 - (a-1)^3 - 12a^3 = a^3 + 3a^2*3 + 3a*9 + 27 - a^3 + 3a^2 * 1 - 3a*1 + 1 -
-12a^3 = -12a^3 + 12a^2 + 24a + 28 = -4(a^3 - 3a^2 - 6a - 7)
4) (x+2)^3 - x(3x+1)^2 + (2x+1)(4x^2 -2x+1) = 42
x^3 + 3x^2 *2 + 3x*2^2 + 2^3 - 9x^3 - 6x^2 - x + (2x)^3 + 1^3 -42 = 0
11x = 33
x = 3
5) (x^n + x^(n-1))^3 = x^3n + 3x^2n *x^(n-1) + 3x^n *(x^(n-1))^2 + (x^(n-1))^3 =
= x^3n + 3x^(3n-1) + 3x^(3n -2) + x^(3n-3) = x^3n(1 + 3x^(-1) + 3x^(-2) + x^(-3))
6) (a-1)^3 + 3(a-1)^2 + 3(a-1) + 1 + a^3 = a^3 - 3(a-1)^2 + 3(a-1) - 1 +3(a-1)^2 +
+3(a-1) + 1+ a^3 = 2a^3 + 6(a-1) + 1 = 2a^3 + 6a - 5
x=0
Объяснение:
3,8 - 1,5x + (4, 5x – 0,8) = 2,4x + 3
3,8 - 1,5x + 4, 5x – 0,8 = 2,4x + 3
1,5+4,5x-2,4x = -3,8+0,8+3
6x-2,4x = -3+3
3,6x = 0
x=0