1.
√3 + tg15° = √3 + tg(45°-30°) = √3 + tg45° - tg30°/1 + tg45°×tg30° = √3 + 1 - √3/3 / 1 + 1×√3/3 = √3 + 1 - √3/3 / 1 + √3/3 = √3 + 3-√3/3 / 3+√3/3 = √3 + 3-√3/3+√3 = √3 + (3 - √3)×(3 - √3)/6 = √3 + (3 - √3)²/6 = √3 + 9 - 6√3 + 3/6 = √3 + 12-6√3/6 = √3 + 6(2-√3)/6 = √3+2-√3 = 2
ответ: d) 2
2.
8sin15° × cos15° + √3 × tg60° = 4sin30° + √3 × √3 = 4×1/2 + (√3)² = 2+3 = 5
ответ: c) 5
3.
а) tg225° + sin30° = tg(180°+45°) + 1/2 = tg45° + 1/2 = 1 + 1/2 = 3/2 = 1,5
б) √2 × cos315° = √2 × cos(360°-45°) = √2 × cos(-45°) = √2 × cos45° = √2 × √2/2 = (√2)²/2 = 2/2 = 1
ответ: а) 1,5 б) 1
у = -2х² + (10/3)х + 8.
Для определения точек пересечения графиков функции: y=x/3 - 1 и y=-2(x-3) * ( x +1( 1/3) надо их приравнять - общие точки принадлежат обоим графикам:
-2х² + (10/3)х + 8 = (1/3)х - ,
-2х² + (9/3)х + 9 = 0,
-2х² + 3х + 9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=3^2-4*(-2)*9=9-4*(-2)*9=9-(-4*2)*9=9-(-8)*9=9-(-8*9)=9-(-72)=9+72=81;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√t81-3)/(2*(-2))=(9-3)/(2*(-2))=6/(2*(-2))=6/(-2*2)=6/(-4)=-6/4=-1.5;
x_2=(-√81-3)/(2*(-2))=(-9-3)/(2*(-2))=-12/(2*(-2))=-12/(-2*2)=-12/(-4)=-(-12/4)=-(-3)=3.
ответ: х_1 = -1,5, у = (1/3)*(-3/2) - 1 = -1,5,
х_2 = 3, у = (1/3)*3 - 1 = 0.