2222 - 111 - 99 + 5 = 2017.
Посмотрим, чему может равняться число . Так как выражение "- EEE - AA + R" больше или равно - 1086 (= - 999 - 88 + 1), то должно быть довольно близко к 2017. 3333 и 1111 не подходят, значит = 2222.
Теперь обратим внимание на число EEE. Пусть оно равно 222 или больше. Тогда у нас получится 2222 - 222 = 2000 или меньше. Теперь от этого числа нужно отнять некоторое двузначное и прибавить однозначное, то есть еще уменьшить число. Но так невозможно будет получить 2017. Значит, EEE = 111.
Мы имеем: 2222 - 111 = 2111. Если мы отнимем 94, то получим ровно 2017, но тогда R = 0 (ненатуральное). Тогда мы можем подставить A = 95, 96, 97, 98, 99 и получим соответственно R = 1, 2, 3, 4, 5. Но А должно состоять из одной цифры, так что A = 99, R = 5.
Примечание:
При решении ребуса мы учитывали то, что все числа являются натуральными, и не повторяются (то есть Y не может быть равно R и т. д.).
{4а + 6b = 9
{3a - 5b = 2
- - - - - - - - - -
Сложим оба уравнения системы
7а + b = 11 ⇒ b = (11 - 7a)
Подставим значение b в любое уравнение системы
4а + 6 · (11 - 7а) = 9 или 3а - 5 · (11 - 7а) = 2
4а + 66 - 42а = 9 3а - 55 + 35а = 2
4а - 42а = 9 - 66 3а + 35а = 2 + 55
-38а = -57 38а = 57
а = -57 : (-38) а = 57 : 38
а = 1,5 а = 1,5
Теперь подставим значение а в любое уравнение системы
4 · 1,5 + 6b = 9 или 3 · 1,5 - 5b = 2
6 + 6b = 9 4,5 - 5b = 2
6b = 9 - 6 5b = 4,5 - 2
6b = 3 5b = 2,5
b = 3 : 6 b = 2,5 : 5
b = 0,5 b = 0,5
ответ: (1,5; 0,5).