|x| - это расстояние от нуля до x, поэтому решением этой системы неравенств (ведь тут не одно неравенство, а два) является объединение двух интервалов (-10; -4)∪(4;10). Концы интервалов в ответ не входят, поэтому подсчитываем количество целых решений внутри; достаточно подсчитать их количество в одном из них и удвоить: 5·2=10
ответ: 10
Замечание 1. Если бы интервал был бы большим, мы бы придумали, как подсчитать количество целых точек на основании концевых точек, но здесь легче их просто пересчитать.
Замечание 2. И все-таки хочется придумать общую формулу. Если интервал (m;n), где m и n - целые числа и m<n, то целых чисел внутри n-m-1.
Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
объединение двух интервалов
(-10; -4)∪(4;10).
Концы интервалов в ответ не входят, поэтому подсчитываем количество целых решений внутри; достаточно подсчитать их количество в одном из них и удвоить: 5·2=10
ответ: 10
Замечание 1. Если бы интервал был бы большим, мы бы придумали, как подсчитать количество целых точек на основании концевых точек, но здесь легче их просто пересчитать.
Замечание 2. И все-таки хочется придумать общую формулу.
Если интервал (m;n), где m и n - целые числа и m<n, то целых чисел внутри n-m-1.