М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
marullens
marullens
05.05.2023 17:13 •  Алгебра

Сложите алгебраические дроби с разными знаменателями (подробно) 2/(2+a)"степень 2" + 3/a"степень 2"-4a+4

👇
Открыть все ответы
Ответ:
sukdimka2013
sukdimka2013
05.05.2023

Дана функцию f(x) = (x² - 3x) / (x - 4 ).

1 ) Найдите наибольшее и наименьшее значения функции на данном промежутке [-1; 3].  

2 ) Найдите промежутки возрастания и убывания и точки экстремума функции  .

ответ:  1 )   наибольшее 1  ;   наименьшее   - 0,8 .

2 )

Функция возрастает: x ∈( -∞ ; 2 ]  и x ∈[ 6 ;∞) .

Функция  убывает   x∈[2 ; 4) и x ∈(4 ;6] ;

Точки экстремумов:  x =2 точка максимума  и x = 6 точка минимума .

Объяснение:   D(f) : ( - ∞ ; 4)  ∪ (4 ; ∞ )                   [    R \ {4 }    ]

( u(x) /v(x) ) ' =  ( u'(x)*v(x) - u(x)*v'(x) ) / v²(x)

f ' (x) = ( (x² - 3x) / (x - 4 ) ) ' =( (x² - 3x) ' *(x - 4 ) - (x² - 3x)*(x-4) ' ) / (x-4)² =

( (2x - 3)*(x - 4 ) - (x² - 3x)* 1 ) / (x-4)²  = (x² - 8x +12) / (x-4)² =(x-2)(x-6) / (x-4)².

f ' (x)  = 0 ⇔(x-2)(x-6) / (x-4)² =0 ⇒ x₁ =2 ,  x₂ = 6 .

f'(x) не существует в точке x =4 , но в этой точке не существует и функция  

1)

* * *    x₂ = 6 ∉  [ -1 ; 3 ]      * * *

x₁=2 ∈ [ -1 ; 3 ]      f (x₁ ) =f (2 )  =(2² -3*2) /(2 - 4)  = 1 ;

f (a ) =f (-1 ) =( (-1)² -3*(-1) ) /( (-1) - 4)  = - 4/5 = - 0,8 ;

f(b) = f(3) = (3² - 3*3) /(3 -4) = 0

На  промежутке [-1;3]  наибольшее значение функции  равно 1 (если x=2 ),  наименьшее значение  -0,8 (если x= - 1 ) .  

2)

Промежутки возрастания и убывания и точки экстремума функции  .

f ' (x)  = 0 ⇔(x-2)(x-6) / (x-4)² =0        ⇒ x₁ =2 ,  x₂ = 6 .

Функция  возрастает  , если  f ' (x)  ≥ 0

Функция убывает  ,  если  f ' (x) ≤  0

По методу  интервалов

f '(x )  + + + + + + + + + + [ 2 ]  - - - - - - - - - - [ 6]  + + + + + + +

f (x )  ↑  (возрастает)            ↓ (убввает)             ↑  (возрастает)

Функция возрастает: x ∈( -∞ ; 2 ]  и x ∈[ 6 ;∞) .

Функция  убывает   x∈[2 ; 4) и x ∈(4 ;6] .

x =2  и   x=6 точки  экстремумов ( производная функции меняет знак при прохождения через эти точки )

x =2 точка максимума ,   f(2) = 1

x =6 точка  минимума  ,   f(6)=(6² -3*6) /(6 - 4)  =(36-18)/ 2=9.

4,7(85 оценок)
Ответ:
робот60
робот60
05.05.2023

1) 3750; 2) 2610

Объяснение:

Задачи решаются с применением формул арифметической прогрессии.

1) Чётные числа большие 25, но меньшие 125, это числа

26, 28, ..., 124 . Здесь знаменатель арифметической прогрессии d=2,  a(1)=26, a(n)=124

a(n)=a(1)+d(n-1)

124 = 26+2(n-1)

124=26+2n-2

2n=100

n=50 - количество членов прогрессии.

Найдём их сумму:

S(n)=(a(1)+a(n))*n/2

S(50)=(26+124)*50:2=3750

2) Двузначные числа: 10,11,..., 99. Всего их 90=99-9.

   Их сумма S(90)=(10+99)*90:2=4905

   Двузначные, которые делятся на 3:

   12, 15,...,99. Сколько их?

   a(1)=12, a(n)=99, d=3

   99=12+3(n-1)

   99=12+3n-3

   3n=90

   n=30

   Найдём их сумму: S(30)=(12+99)*30:2=1665

   Двузначные, которые делятся на 5:

   10, 15,...,95. Сколько их?

   a(1)=10, a(n)=95, d=5

   95=10+5(n-1)

   95=10+5n-5

   5n=90

   n=18

   Найдем их сумму: S(18)=(10+95)*18:2=945

  Двузначные, которые делятся и на 3 и на 5:

   15, 30, 45, 60, 75, 90. Их сумма равна 315

   Теперь, от суммы всех двузначных чисел отнимем сумму чисел делящихся на 5, сумму чисел делящихся на 3 и прибавим сумму чисел, делящихся на 3 и на 5 одновременно (чтобы не было задвоения), получим:

4905 -1665 -945 +315 = 2610

 

   

4,5(92 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ