2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5 y`=-2x-6 y`=0 при х=-3 - принадлежит [-4,-2] у(-4)=-(-4)^2-6*(-4)+5=13 у(-3)=-(-3)^2-6*(-3)+5=14 у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2] max(y)=14
3. y=корень(3) - горизонтальная прямая касательная к прямой в любой точке совпадает с прямой к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4. y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3)) кривая третей степени, симметричная относительно точки x=1; у=0 имеет локальный минимум и локальный максимум имеет три нуля функции имеет одну точку перегиба расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия y=корень(3x) y`=1/2*корень(3/x) y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
1 2^2x-32*2^x-68≥0 2^x=a a²-32a-68≥0 a1+a2=32U a1*a2=-68 a1=-2 U a2=34 a≤-2⇒2^x≤-2 нет решения a≥34⇒2^x≥34⇒x≥log(2)34 2 7^x*(3^x-9)-(3^x-9)<0 (7^x-1)(3^x-9)<0 1)7^x-1>0 U 3^x-9<0⇒7^x>1 U 3^x<9⇒x>0 U x<2⇒0<x<2 2)7^x-1<0 U 3^x-9>0⇒7^x<1 U 3^x>9⇒x<0 U x>2нет решения x∈(0;2) 3 2^-x=a 2a²-33a+16≤0 D=1089-128=961 a1=(33-31)/4=1/2 U a2=(33+31)/4=16 1/2≤a≤16⇒1/2≤2^-x≤16⇒-4≤x≤1 x∈[-4;1] 4 2^x² -4*2^x≤0 2^x*(2^(x²-x)-4)≤0 2^x>0 при любом х⇒2^(x²-x)-4≤0 2^(x²-x)≤4 x²-x≤2 x²-x-2≤0 x1+x2=1 U x1*x2=-2⇒x1=-1 U x2=2 x∈[-1;2]
Объяснение:
должно быть правильно)