Чтобы решить систему:
7x - 3y = 13;
x - 2y = 5,
Мы с вами применим метод подстановки. Первым действием из второго уравнения системы выражаем одну переменную через другую (переменную x через y).
Система:
7x - 3y = 13;
x = 5 + 2y;
Подставляем в первое уравнение 7x - 3y = 13 вместо x выражение 5 + 2y из второго и получаем:
x = 5 + 2y;
7(5 + 2y) - 3y = 13;
Ищем значение переменной y:
7 * 5 + 7 * 2y - 3y = 13;
35 + 14y - 3y = 13;
11y = -22;
y = -2.
Система уравнений:
x = 5 + 2 * (-2) = 5 - 4 = 1;
y = -2
ответ: (1; -2) решение системы.
1) a^2 - 10a +25 = ( a - 5 )^2 ( a - 5 )^2=a^2-10a+25
a^2-10a+25=a^2-10a+25
a^2-10a+25-a^2+10a-25=0
0=0
2) 25 - a^2 = ( 5 + a )( a - 5 ) 3) ( b - 1 )( a - 5 ) = - ( 1 - b )( a - 5 )
25-a^2-5a+a^2+25a-5a=0 ( b - 1 )( a - 5 )=(b+1)(a - 5)
15a+25=0 ba-a-5b-ba-a+5b+5=0
15a=-25 2a+5=0
a=-25/-15 2a=-5
a=5/3 a=-5/-2
a=2.5