В решении.
Объяснение:
1) 5а³ - 125аb² = 5a(a² - 25b²) = 5a(a - 5)(a + 5);
2) a² - b² - 5a + 5b =
= (a² - b²) - (5a - 5b) =
= (a - b)(a + b) - 5(a - b) =
= (a - b)(a + b - 5);
3) а²- 2ав + в² - ас + вс =
= (а²- 2ав + в²) - (ас - вс) =
= (a - b)² - c(a - b) =
= (a - b)(a - b - c);
4) 25a² + 70ab + 49b² =
= (5a + 7b)² =
= (5a + 7b)(5a + 7b);
5) a² - 2ab + b² - 3a + 3b =
= (a² - 2ab + b²) - (3a - 3b) =
= (a - b)² - 3(a - b) =
= (a - b)(a - b - 3);
6) 63ab³ - 7a²b =
= 7ab(9b² - a);
7) (b - c)(b + c) - b(b + c) =
= (b + c)(b - c - b) =
= -c(b + c);
8) m² + 6mn + 9n² - m - 3n =
= (m² + 6mn + 9n²) - (m + 3n) =
= (m + 3n)² - (m + 3n) =
= (m + 3n)(m + 3n - 1);
9) a² - 9b² + a - 3b =
= (a² - 9b²) + (a - 3b) =
= (a - 3b)(a + 3b) + (a - 3b) =
= (a - 3b)(a + 3b + 1).
Из 100 туристов немецкий знают 30 чкловек. английский - 28, французский - 42. Английский и нимецкий одновременно -8 человек, английский и французский -5 человек, всеми тремя языками владеют 3 человека. Сколько туристов не владеют ни одним из этих языков
Решение: Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий. (После начертания кругов видим, что в условии задачи пропущено владение немецким и французским языками - поэтому решу задачу так, как решал ее раньше). Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человека. Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части. Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек. По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.
а кто закон выложит?? никто не сможет решить без закона)