Объяснение:
вектор AB = (0-3; -7-(-1); 3-0) = (-3; -6; 3);
вектор AD = (3-3; 2-(-1); 6-0) = (0; 3; 6);
вектор AC = (-2-3; 1-(-1); -1-0) = (-5; 2; -1);
(вектор АВ)*(вектор AD) = (-3; -6; 3)*(0; 3; 6) = -3*0 + (-6)*3 + 3*6 = 0;
То есть векторы AB и AD перпендикулярны, это значит, что
<BAD = 90°.
(вектор AB)*(вектор AC) = (-3; -6; 3)*(-5; 2; -1) = (-3)*(-5) + (-6)*2 + 3*(-1) =
= 15 - 12 - 3 = 15 - 15 = 0;
То есть векторы AB и AC перпендикулярны, а это значит, что
<BAC = 90°.
Таким образом получается, что прямая AB перпендикулярна двум различным прямым AD и AC, которые лежат в плоскости ADC. Поэтому по признаку перпендикулярности прямой и плоскости получаем, что
AB ⊥ пл. ADC, что означает, что AB перпедикулярна любой прямой, лежащей в плоскости ADC, то есть что искомый угол = 90°.
Преобразовываем ур-е к типу y=kx+b, где k-это угловой коэфициент.
В данном случае:
1) 3х-y+6=0
-y= -6-3x
y=3x+6, здесь k1=3
2) x-y+4=0
-y= -x-4
y=x+4, здесь k2=1
Воспользуемся формулой
tg(альфа) =k2-k1/1+k1k2
У нас k1=3, k2=1
Подставляем:
tg(альфа) =(1-3)/1+(3*1)= -2/4=-1/2=1/2
всякий раз, как в знаменателе появляется нуль, угол θ надо считать равным ±90° (как поворот на +90°, так и поворот на -90° совмещает любую из перпендикулярных прямых с другой) .
По таблицам тригонометрических функций находим, что альфа=26° 33´ 54˝ градуса.