М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dimanchik0108
dimanchik0108
22.06.2022 17:49 •  Алгебра

Подайте многочлен в стандартному вигляді x²-5x+6+4x-5​

👇
Ответ:
Syrtou
Syrtou
22.06.2022

.......................


Подайте многочлен в стандартному вигляді x²-5x+6+4x-5​
4,6(32 оценок)
Открыть все ответы
Ответ:
valu49
valu49
22.06.2022

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Объяснение:

\left \{ {{3x-y=5} \atop {3x^{2}+y^{2}=13}} \right. ;

Выражаем из верхнего уравнения переменную "у":

\left \{ {{y=3x-5} \atop {3x^{2}+y^{2}=13}} \right. ;

Подставляем полученное выражение в нижнее уравнение вместо "у":

\left \{ {{y=3x-5} \atop {3x^{2}+(3x-5)^{2}=13}} \right. ;

Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:

(a-b)^{2}=a^{2}-2ab+b^{2};

(3x-5)^{2}=(3x)^{2}-2 \cdot 3x \cdot 5+5^{2}=3^{2} \cdot x^{2}-30x+25=9x^{2}-30x+25;

\left \{ {{y=3x-5} \atop {3x^{2}+9x^{2}-30x+25=13}} \right. ;

Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:

\left \{ {{y=3x-5} \atop {(3+9) \cdot x^{2}-30x+25=13}} \right. ;

Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+25-13=0}} \right. ;

Выполним вычитание:

\left \{ {{y=3x-5} \atop {12x^{2}-30x+12=0}} \right. ;

Разделив все части нижнего уравнения на 6, получим:

\left \{ {{y=3x-5} \atop {2x^{2}-5x+2=0}} \right. ;

Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:

\left \{ {{y=3x-5} \atop {x^{2}-2\frac{1}{2}x+1=0}} \right. ;

Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:

\left \{ {{x_{1}+x_{2}=-(-2\frac{1}{2})} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Минус перед скобкой и минус после скобки дают плюс:

\left \{ {{x_{1}+x_{2}=2\frac{1}{2}} \atop {x_{1} \cdot x_{2}=1}} \right. ;

Корнями этой системы являются числа 1/2 и 2.

Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:

\left \{ {{y=3 \cdot \frac{1}{2}-5} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=\frac{3}{2}-\frac{10}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{y=-\frac{7}{2}} \atop {x=\frac{1}{2}}} \right. \Leftrightarrow \left \{ {{x=\frac{1}{2}} \atop {y=-3\frac{1}{2}}} \right. ;

\left \{ {{y=3 \cdot 2-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{y=6-5} \atop {x=2}} \right. \Leftrightarrow \left \{ {{x=2} \atop {y=1}} \right. ;

Мы получили две пары корней:

(\frac{1}{2}; -3\frac{1}{2}), \quad (2; 1);

Они являются решениями системы.

4,4(15 оценок)
Ответ:
ChrisUnte
ChrisUnte
22.06.2022
\frac{(3x^2-5x+2)(x^2-4x+4)}{(-x^2-6x+7)(-3x^2+x-3)} \leq 0
\frac{(x-1)(3x-2)(x-2)^2}{-(x-1)(x+7)(-(3x^2-x+3))} \leq 0
В знаменателе минусы уничтожаются (минус на минус дает плюс).
3x^2 - x + 3 ≠ 0
D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет.
3x^2 - x + 3 > 0 при любом x.
(x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0
Поэтому x = 2 - это решение.
Делим на всё это, а также сокращаем (x - 1).
Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
\frac{(3x-2)}{(x+7)} \leq 0
Особые точки: x = -7 и x = 2/3
По методу интервалов берем любое число, например, 0
\frac{3*0-2}{0+7}= \frac{-2}{7}\ \textless \ 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит.
Точка x = 1 в интервал не входит.
ответ: x ∈ (-7; 2/3] U [2]
4,8(30 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ