1) Рассмотрим прямоугольный параллелепипед c длиной а, шириной b, высотой c, причем а, b, с - не равны друг другу. Такой параллелепипед имеет 3 плоскости симметрии: через центр параллельно верхней/нижней, левой/правой, передней/задней граням. 2) Если два измерения прямоугольного параллелепипеда равны, например, a=b, то фигура имеет еще 2 плоскости симметрии - диагональные плоскости (относительно одной пары граней). Итого: 5 плоскостей. 3) Если все три измерения прямоугольного параллелепипеда равны a=b=c (куб), то он имеет еще две пары аналогичных диагональных плоскостей симметрии относительно двух других пар граней. Итого: 9 плоскостей. ответ: не могло получиться 7 плоскостей
Пусть позже Ани прибежало а человек. Тогда раньше Ани прибежало 4а человек. Получается, что в забеге участвовало а+4а+1=5а+1 человек, включая Аню. N=5a+1 - число N при делении на 5 дает остаток 1. Пусть раньше Миши прибежало b человек. Тогда позже Миши прибежало 5b человек. Получается, что в забеге участвовало b+5b+1=6b+1 человек, включая Мишу. N=6b+1 - число N при делении на 6 дает остаток 1. Анализируем варианты ответа: 25: делится нацело на 5 - не подходит 26: при делении на 6 дает остаток 2 - не подходит 31: подходит 36: делится нацело на 6 - не подходит 37: при делении на 5 дает остаток 2 - не подходит ответ: 31
1) (2a-b)*(4a^2+b^2)=2a*4a^2+2ab^2-4a^2b-b*b^2=
8a^3+2ab^2-4a^2b-b^3