По условию:
1 собака + 2 кошки => 60 минут
4 собака + 2 кошки => 20 минут
Если в первом случае увеличить количество собак и кошек в 3 раза, то им всем вместе потребуется в 3 раза меньше времени:
3 собаки + 6 кошек => 20 минут
Теперь у нас есть две ситуации, занимающие одно и то же время: 4 собака + 2 кошки едят сосиски за 20 минут и 3 собаки + 6 кошек едят сосиски за 20 минут. Приравняем:
4 собака + 2 кошки = 3 собаки + 6 кошек
1 собака = 4 кошки
То есть, одна собака может заменить 4 кошки.
Видоизменим первое условие, увеличив число животных в два раза и сократив время в два раза:
2 собаки + 4 кошки => 30 минут
Подставим соотношение "1 собака = 4 кошки":
2 собаки + 1 собака => 30 минут
3 собака => 30 минут
Но если собак будет в три раза меньше, то времени будет затрачено в три раза больше:
1 собака => 90 минут
ответ: 90 минут
Пусть меньшая сторона равна x, тогда большая будет x+8. Составим и решим уравнение:
x*(x+8)=65
x^2+8x=65
x^2+8x-65=0
получилось квадратное уравнение
D=64+260=324=18^2
x1=(-8+18)/2=5, x2=(-8-18)/2= -13
Сторона не может быть отрицательной, значит подходит только один корень уравнения, то есть 5 м - это меньшая сторона.
Большая сторона равна 5+8=13 м.
Чтобы найти, сколько материала надо купить, найдём периметр бордюра.
P=2*(13+5)=36 м.
Соответственно, нужно купить 4 упаковки материала по 10 м, чтобы полностью построить бордюр. Останется материала на 4 м.
х^2+y^2=2.5xy
x-y=0.25xy
(x-y)(x+y)=2.5xy
x-y=0.25xy
тогда я получаю
0.25xy(x+y)=2.5xy
x+y=2.5xy/0.25xy
x+y=10
x=10-y
(10-y)^2+y^2=2.5y(10-y)
100-20y-y^2=25y-2.5y^2
4.5y^2-45y+100=0 /5
0.9y^2-9y+20=0
D=81-72=9
y1=12/1.8=6(2/3) x1=10-6(2/3)=3(1/3)
y2=3(1/3) x2=10-3(1/3)= 6(2/3)
ответ: х1=3(1/3) у1= 6(2/3)
х2= 6(2/3) у2= 3(1/3)